DOI QR코드

DOI QR Code

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry

무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석

  • Lee, Jae One (Dept. of Civil Engineering, Dong-A University) ;
  • Kim, Doo Pyo (Dept. of Civil Engineering, Dong-A University)
  • Received : 2019.11.21
  • Accepted : 2019.12.03
  • Published : 2019.12.31

Abstract

There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.

무인항공사진측량을 이용한 지도제작의 지형·지물 묘사 방법에는 벡터화와 수치도화 방법이 있다. 벡터화 방법은 정사영상에서 평면위치를 추출하고, 수치표면모델(DSM: Digital Surface Model) 혹은 수치표고모델(DEM: Digital Elevation Model)에서 높이 값을 취득하고 있다. 그러나 지금까지 벡터화 성과의 정확도는 대부분 검사점만을 이용하여 분석하고 있어 지상시설물과 건물 등 3차원 지물의 위치정확도 판단이 어렵다. 이에 본 연구에서는 검사점 뿐만 아니라 지형·지물의 Layer별 모서리에 대한 정확도를 분석하여 벡터화를 이용한 3차원 공간정보취득 및 수치지도제작 가능성을 판단하고자 하였다. 촬영은 DJI사 Phantom 4 pro로 비행고도 90m에서 GSD (Ground Sample Distance) 3.6cm의 영상을 취득하였다. 연구 결과, 벡터화에 의한 묘사의 정확도는 현장측량 성과와 비교하여 검사점의 잔차를 분석한 결과 평면 RMSE (Root Mean Square Error)가 0.045m로 나타나 정사영상을 이용한 1/1,000 축척의 수치지형(평면)현황도 제작이 가능할 것으로 판단된다. 반면 전주, 옹벽 및 건물 등 Layer별 모서리 좌표를 기준자료와 비교하여 3차원 정확도를 분석한 결과 RMSE가 평면 0.068~0.162m, 표고 0.090~1.840m로 나타났다. 따라서 벡터화로 취득한 3차원 성과의 표고위치에서 오차가 크게 발생하여 벡터화를 이용한 3차원 공간정보 취득 및 1/1,000 수치지도제작이 어려운 것으로 판단된다.

Keywords

References

  1. Agisoft. (2019), Methashape, Agisoft, Petersburg, https://www.agisoft.com (last date accessed: 12 September 2019)
  2. Choi, M.S. (2018), A Study on the Effects of Development of Digital Mapping in the Island Areas Using the Drone Photogrammetry Method, Master's thesis, Inha University, Incheon, Korea, 66p.
  3. Global Mapper. (2019), Blue Marble Geographics, Gardiner, https://www.bluemarblegeo.com/products/global-mapper.php (last date accessed: 17 September 2019)
  4. Kim, D.P. (2019), Accuracy analysis of feature collection methods using UAV-photogrammetry, Master's thesis, Dong-A University, Busan, Korea, 69p.
  5. Kim, Y.D., Park, B.W., and Lee, H.S. (2018), Accuracy analysis according to GCP layout type and flying height in orthoimage generation using low-cost UAV, Journal of Korean Society for Geospatial Information System, Vol. 26, No. 3, pp. 31-39. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2018.26.3.031
  6. Lee, J.O. and Lee, S.B. (2018), Quality evaluation method for surveying results with UAVs, Proceedings of 2018 KSGIS Fall Conference, 1-3 Nov., Jeju, Korea, Vol.11, pp. 265-266.
  7. Lee, J.O., Sin, S.Y., Jung, J.W., and Kim, D.P. (2019), Accuracy analysis of 3D geo-information through vectorizing in UAVphotogrammetry, Proceedings of KSCE 2019 Convection, 16-18 Oct., Pyeong Chang, Korea, Vol. 7, pp. 265-266.
  8. Lim, S.B (2016), Geospatial Information Data Generation Using Unmanned Aerial Photogrammetry and Accuracy Assessment, Ph.D. dissertation, Chungnam University, Daejeon, Korea, 136p.
  9. National Geographic Information Institute (NGII). (2018), Guidelines for the Public Survey Using UAV, NGII Guidelines No. 2018-1075, pp. 13-14.
  10. Park, J.K. and Jung, K.Y. (2019), 3D model generation and accuracy evaluation using unmanned aerial oblique image, Journal of the Korea Academia-Industrial cooperation Society, Vol. 20, No. 3, pp. 587-593. (in Korean with English abstract)
  11. Udin, W.S. and Ahamad, A. (2014), Assessment of photogrammetric mapping accuracy based on variation flying altitude usingunmanned aerial vehicle, International Symposium of the DigitalEarth, IOP, 26-29 August, Sarawak, Malaysia, Vol. 18, pp. 1-7.
  12. Uysal, M., Toprak, A.S., and Polat, N. (2015), DEM generation with UAV photogrammetry and accuracy analysis in Sahitler hill, Measurement, Vol. 73, pp. 539-543. https://doi.org/10.1016/j.measurement.2015.06.010
  13. Yun, K.H., Kim, D.I., and Song, Y.S. (2018), Accruacy assessment on the Stereoscope based digital mapping using unmanned aircraft vehicle image, Journal of Cadastre & Land InformatiX, Vol. 48, No. 1, pp. 111-121. (in Korean with English abstract) https://doi.org/10.22640/LXSIRI.2018.48.1.11

Cited by

  1. UAV를 이용한 산사태 피해지역 모니터링 방법에 관한 연구 vol.23, pp.6, 2019, https://doi.org/10.21289/ksic.2020.23.6.1043
  2. 무인항공기를 이용한 노천광산 개발지 조사에 관한 연구 vol.11, pp.1, 2021, https://doi.org/10.22156/cs4smb.2021.11.01.136