• Title/Summary/Keyword: embryonic tissue

Search Result 168, Processing Time 0.026 seconds

Optical Stimulation and Pacing of the Embryonic Chicken Heart via Thulium Laser Irradiation

  • Chung, Hong;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Optical stimulation provides a promising alternative to electrical stimulation to selectively modulate tissue. However, developing noninvasive techniques to directly stimulate excitable tissue without introducing genetic modifications and minimizing cellular stress remains an ongoing challenge. Infrared (IR) light has been used to achieve optical pacing for electrophysiological studies in embryonic quail and mammalian hearts. Here, we demonstrate optical stimulation and pacing of the embryonic chicken heart using a pulsed infrared thulium laser with a wavelength of 1927 nm. By recording stereomicroscope outputs and quantifying heart rates and movements through video processing, we found that heart rate increases instantly following irradiation with a large spot size and high radiant exposure. Targeting the atrium using a smaller spot size and lower radiant exposure achieved pacing, as the heart rate synchronized with the laser to 2 Hz. This study demonstrates the viability of using the 1927 nm thulium laser for cardiac stimulation and optical pacing, expanding the optical parameters and IR lasers that can be used to modulate cardiac dynamics.

Cancer stem cell surface markers on normal stem cells

  • Kim, Won-Tae;Ryu, Chun Jeih
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.285-298
    • /
    • 2017
  • The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.

The Use of Stem Cells as Medical Therapy (줄기세포를 이용한 세포치료법)

  • Son Eun-Hwa;Pyo Suhkneung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

Comparison of Expression Profiles of HOX Gene Family in Human Embryonic Stem Cells and Selected Human Fetal Tissues

  • Hwang Jung-Hye;Kim Kye-Seong;Kim Byung-Ju;Kwon Hee-Sun;Lee Man-Ryoul;Park Moon-Il;Jang Se-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.556-561
    • /
    • 2006
  • The HOX genes coding homeodomain proteins have been suggested as a candidate molecular switch that determines the fates of cells during embryonic development and patterning. It is believed that a set of differentiation-specific HOX genes enter into a turn-on state during tissue differentiation, in contrast to stem cell-specific HOX genes that enter into a turn-off state. However, comprehensive data of expression profiles of HOX genes in human embryonic stem cells (hESC) and differentiated embryonic tissues are not available. In this study, we investigated the expression patterns of all 39 HOX genes in hESC and human fetal tissues and analyzed the relationships between hESC and each tissue. Of the 39 genes, 18 HOX genes were expressed in stem cells, and diverse expression patterning was observed in human fetal tissues when compared with stem cells. These results indicate that HOX genes could be main targets for switching of stem cell differentiation into tissues.

Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction

  • Islam Mohamed Saadeldin;Seif Ehab;Ahmed Elsayed Noreldin;Ayman Abdel-Aziz Swelum;Seonggyu Bang;Hyejin Kim;Ki Young Yoon;Sanghoon Lee;Jongki Cho
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.40.1-40.19
    • /
    • 2024
  • Importance: The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. Observations: This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. Conclusions and Relevance: This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.

Expression patterns of PRDM10 during mouse embryonic development

  • Park, Jin-Ah;Kim, Keun-Cheol
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • It is well known that PR/SET family members participate in transcriptional regulation via chromatin remodeling. PRDM10 might play an essential role in gene expression, but no such evidence has been observed so far. To assess PRDM10 expression at various stages of mouse development, we performed immunohistochemistry using available PRDM10 antibody. Embryos were obtained from three distinct developmental stages. At E8.5, PRDM10 expression was concentrated in the mesodermal and neural crest populations. As embryogenesis proceeded further to E13.5, PRMD10 expression was mainly in mesoderm-derived tissues such as somites and neural crest-derived populations such as the facial skeleton. This expression pattern was consistently maintained to the fetal growth period E16.5 and adult mouse, suggesting that PRDM10 may function in tissue differentiation. Our study revealed that PRDM10 might be a transcriptional regulator for normal tissue differentiation during mouse embryonic development.

Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis

  • Kim, Suk Weon;Oh, Myung Jin;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.341-345
    • /
    • 2009
  • This study describes culture conditions for a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis in root explant cultures of the commercial rose cultivar 'Charming'. Root explants formed white calluses at a frequency of 30% after 6 weeks of culture on Schenk and Hildebrandt (SH) medium supplemented with $11mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid. After 6 weeks of transfer to SH medium without growth regulators, initial white calluses gave rise to globular somatic embryos at a frequency of 2.8%, which were subsequently dedifferentiated to embryonic tissues. Somatic embryos or embryonic tissues initially derived from root explants did not undergo development beyond cotyledonary stage. To produce adventitious shoots, embryonic tissues were sliced and cultured on SH medium with $0.5mg\;1^{-1}$ 6-benzyladenine. After 4 weeks of culture, 28% of embryonic tissue explants formed adventitious shoots. Regenerated shoots were rooted on half strength SH medium with $0.1mg\;1^{-1}$ ${\alpha}-naphthalaneacetic$ acid and subsequently grown to maturity. Root-derived embryonic tissues were proliferated by subculture, while retaining the capacity for shoot production for a few years.

Effects of Heating on Hydroxyl Radical-Generated Toxicity in Mouse Forebrain Tissue Culture

  • Lee, Jeong-Chae;Lim, Kye-Taek
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 1998
  • This experiment was carrid out to know the effects of heating and serum on hydroxyl radicals in embryonic mouse forebrain (cerebrum) culture. The heating to mouse embryonic cerebrum cells in culture was done in a water bath at 43${\circ}C$ for 60min. After that, two supernatants were prepared at 20 hrs and 48 hrs respectively after heat treatment to the brain cells. To find out the heating effects on neuron cells, mouse cerebrum cells (13 embryonic day) were cultured in hydroxyl radical generation system composed of 20mU/ml glucose oxidase (GO system), using condition of normal culture media (MEM, 5% serum, 5% $CO_2$or supernatant prepared after heating at 43${\circ}C$ for 60 min in a water bath. Supernatant prepared at 20 hrs after heat treatment had a greater protective effects against hydroxyl radical than supernatant prepared at 48 hrs after heat treatment . Otherwise, the protective effect of serum against hydroxyl radicals in the cultured brain cells is higher than that in the heat treatment. These results indicated that serum in culture media reduced cytotoxicity of hydroxyl radicals in mouse forebrain culture, also that heat treatment showed the protective effects against hydroxyl radicals generated with 20mU/ml GO system in mouse forebrain culture.

  • PDF

Rhox in mammalian reproduction and development

  • Lee, Sang-Eun;Lee, Su-Yeon;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.3
    • /
    • pp.107-114
    • /
    • 2013
  • Homeobox genes play essential roles in embryonic development and reproduction. Recently, a large cluster of homeobox genes, reproductive homeobox genes on the X chromosome (Rhox) genes, was discovered as three gene clusters, ${\alpha}$, ${\beta}$, and ${\gamma}$ in mice. It was found that Rhox genes were selectively expressed in reproduction-associated tissues, such as those of the testes, epididymis, ovaries, and placenta. Hence, it was proposed that Rhox genes are important for regulating various reproductive features, especially gametogenesis in male as well as in female mammals. It was first determined that 12 Rhox genes are clustered into ${\alpha}$ (Rhox1-4), ${\beta}$ (Rhox5-9), and ${\gamma}$ (Rhox10-12) subclusters, and recently Rhox13 has also been found. At present, 33 Rhox genes have been identified in the mouse genome, 11 in the rat, and three in the human. Rhox genes are also responsible for embryonic development, with considerable amounts of Rhox expression in trophoblasts, placenta tissue, embryonic stem cells, and primordial germ cells. In this article we summarized the current understanding of Rhox family genes involved in reproduction and embryonic development and elucidated a previously unreported cell-specific expression in ovarian cells.

The Amount of Telomeres and Telomerase Activity on Chicken Embryonic Cells During Developmental Stages (닭의 발생 단계별 세포내 Telomere의 양적 분포양상과 Telomerase 활성도 분석)

  • Cho, E.J.;Choi, C.H.;Sohn, S.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.187-194
    • /
    • 2005
  • Telomeres locate at the end of chromosomes and consist of a tandem repeat sequence of $(TIAGGG)^{n}$ and associated proteins. Telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. This study was carried out to analyze the amount of telomeres and telomerase activity of chicken cells during embryonic and developmental stages. The whole embryos and prenatal tissues such as brain, heart, liver, kidney and testis at different developmental stages were obtained from Korean Native Chicken. The amount of telomeres on embryonic cells was analyzed by quantitative fluorescence in situ hybridization (Q-FISH) techniques using the chicken telomeric DNA probe. Telomerase activity was measured by telomeric repeat amplification protocol (TRAP) assay. Results indicated that the amounts of telomeric DNA on the most embryonic cells were gradually decreased during ontogenesis. Furthermore, the quantity of telomeres was quite different among embryonic tissues according to developmental origin. The relative amount of telomeres has more in regenerative cells such as embryonic disc and testicular cells than in non-regenerative cells such as liver, brain, heart and kidney cells. Telomerase activity was also highly detectable in most chicken cells at early embryonic stages. After 9 days of incubation, however, the telomerase activitie W