Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.1.001

Optical Stimulation and Pacing of the Embryonic Chicken Heart via Thulium Laser Irradiation  

Chung, Hong (Life Science Concentration, Gwangju Institute of Science and Technology)
Chung, Euiheon (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology)
Publication Information
Current Optics and Photonics / v.3, no.1, 2019 , pp. 1-7 More about this Journal
Abstract
Optical stimulation provides a promising alternative to electrical stimulation to selectively modulate tissue. However, developing noninvasive techniques to directly stimulate excitable tissue without introducing genetic modifications and minimizing cellular stress remains an ongoing challenge. Infrared (IR) light has been used to achieve optical pacing for electrophysiological studies in embryonic quail and mammalian hearts. Here, we demonstrate optical stimulation and pacing of the embryonic chicken heart using a pulsed infrared thulium laser with a wavelength of 1927 nm. By recording stereomicroscope outputs and quantifying heart rates and movements through video processing, we found that heart rate increases instantly following irradiation with a large spot size and high radiant exposure. Targeting the atrium using a smaller spot size and lower radiant exposure achieved pacing, as the heart rate synchronized with the laser to 2 Hz. This study demonstrates the viability of using the 1927 nm thulium laser for cardiac stimulation and optical pacing, expanding the optical parameters and IR lasers that can be used to modulate cardiac dynamics.
Keywords
Optical pacing; Thulium laser; Embryonic chicken heart; Infrared cardiac stimulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, "Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes," J. Physiol. 589 1295-1306 (2011).   DOI
2 M. W. Jenkins, Y. T. Wang, Y. Q. Doughman, M. Watanabe, Y. Cheng, and A. M. Rollins, "Optical pacing of the adult rabbit heart," Biomed. Opt. Express 4, 1626-1635 (2013).   DOI
3 Y. T. Wang, S. Gu, P. Ma, M. Watanabe, A. M. Rollins, and M. W. Jenkins, "Optical stimulation enables paced electrophysiological studies in embryonic hearts," Biomed. Opt. Express 5, 1000-1013 (2014).   DOI
4 M. W. Jenkins, A. R. Duke, S. Gu, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, "Optical pacing of the embryonic heart," Nat. Photon. 4, 623-626 (2010).   DOI
5 S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, "Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease," Congenit. Heart Dis. 12, 322-331 (2017).   DOI
6 M. A. Gimeno, C. M. Roberts, and J. L. Webb, "Acceleration of rate of the early chick embryo heart by visible light," Nature 214, 1014-1016 (1967).   DOI
7 M. G. Shapiro, K. Homma, S. Villarreal, C-P Richter, and F. Bezanilla, "Infrared light excites cells by changing their electrical capacitance," Nat. Commun. 3, 736 (2012).   DOI
8 Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, "Exciting cell membranes with a blustering heat shock," Biophys. J. 106 1570-1577 (2014).   DOI
9 J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, "Calcium imaging of infrared-stimulated activity in rodent brain," Cell Calcium 55, 183-190 (2014).   DOI
10 V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, "Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cyclin," J. Neurophysiol. 112, 1246-1255 (2014).   DOI
11 J. Yao, B. Liu, and F. Qin, "Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies," Biophys. J. 96, 3611-3619 (2009).   DOI
12 S. A. Shintani, K. Oyama, N. Fukuda, and S. Ishitawa, "High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat," Biochem. Biophys. Res. Commun. 457, 165-170 (2015).   DOI
13 I. U. Teudt, H. Maier, C.-P. Richter, and A. Kral, "Acoustic events and 'optophonic' cochlear responses induced by pulsed near-infrared laser," IEEE Trans. Biomed. Eng. 58, 1648-1655 (2011).   DOI
14 M. Chernov and A. W. Roe, "Infrared neural stimulation: a new stimulation tool for central nervous system applications," Neurophotonics 1, 011011 (2014).   DOI
15 J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, "Optical stimulation of neural tissue in vivo," Opt. Lett. 30, 504-506 (2005).   DOI
16 C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, "Neural stimulation with optical radiation," Laser Photon. Rev. 5, 68-80 (2010).   DOI
17 S. Weidmann, "Electrical constants of trabecular muscle from mammalian heart," J. Physiol. 210, 1041-1054 (1970).   DOI
18 S. W. Yoo, G. Oh, A. M. Safi, S. J. Hwang, Y. S. Seo, K. H. Lee, Y. L Kim, and E. Chung, "Endoscopic non-ablative fractional laser therapy in an orthotopic colon tumor model," Sci. Rep. 8, 1673 (2018).   DOI
19 R. H. Wilson, K. P. Nadeau, F. B. Jaworski, B. J. Tromberg, and A. J. Durkin, "Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization," J. Biomed. Opt. 20, 030901 (2015).   DOI
20 S. Weidmann, "The electrical constants of Purkinje fibres," J. Physiol. 118, 348-360 (1952).   DOI
21 F. G. Akar, B. J. Roth, and D. S. Rosenbaum, "Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation," Am. J. Physiol. Heart Circ. Physiol. 281, H533-42 (2001).   DOI
22 C. R. Buston and C. C. McIntyre, "Role of electrode design on the volume of tissue activated during deep brain stimulation," J. Neural Eng. 4, 1-8 (2006).   DOI
23 Y. T. Wang, A. M. Rollins, and M. W. Jenkin, "Infrared inhibition of embryonic hearts," J. Biomed. Opt. 21, 60505 (2016).   DOI
24 S. M. Ford, M. Watanabe, and M. W. Jenkins, "A review of optical pacing with infrared light," J. Neural Eng. 15, 011001 (2018).   DOI
25 G. Kim, H. Kim, and E. Chung, "Towards human clinical application of emerging optogenetics technology," Biomed. Eng. Lett. 1, 207-212 (2011).   DOI
26 A. C. Thompson, P. R. Stoddart, and E. D. Jansen, "Optical stimulation of neurons," Curr. Mol. Imaging 3, 162-177 (2014).   DOI
27 J. M. Greenberg, V. Lumbreras, D. Pelaez, S. M. Rajguru, and H. S. Cheung, "Neural crest stem cells can differentiate to a cardiomyogenic lineage with an ability to contract in response to pulsed infrared stimulation," Tissue Eng. Part C Methods 22, 982-990 (2016).   DOI
28 K. Oyama, A. Mizuno, S. A. Shintani, H. Itoh, T. Serizawa, N. Fukuda, M. Suzuki, and S. Ishiwata, "Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients," Biochem. Biophys. Res. Commun. 417, 607-612 (2012).   DOI