• Title/Summary/Keyword: embryology

Search Result 190, Processing Time 0.025 seconds

Hox Genes are Differentially Expressed during Mouse Placentation

  • Park, Sung-Joo;Lee, Ji-Yeon;Ma, Ji-Hyun;Kim, Helena Hye-Soo;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.169-174
    • /
    • 2012
  • The placenta is an extraembryonic tissue that is formed between mother and fetus and mediates delivery of nutrients and oxygen from the mother to the fetus. Because of its essential role in sustaining the growth of the fetus during gestation, defects in its development and function frequently result in fetal growth retardation or intrauterine death, depending on its severity. Vertebrate Hox genes are well known transcription factors that are essential for the proper organization of the body plan during embryogenesis. However, certain Hox genes have been known to be expressed in placenta, implying that Hox genes not only play a crucial role during embryonic patterning but also play an important role in placental development. So far, there has been no report that shows the expression pattern of the whole Hox genes during placentation. In this study, therefore, we investigated the Hox gene expression pattern in mouse placenta, from day 10.5 to 18.5 of gestation using real-time RT-PCR method. In general, the 5' posterior Hox genes were expressed more in the developing placenta compared to the 3' Hox genes. Statistical analysis revealed that the expression of 15 Hox genes (Hoxa9, -a11, -a13/ -b8, -b9/ -c6, -c9, -c13/ -d1, -d3, -d8, -d9, -d10, -d11, -d12) were significantly changed in the course of gestation. The majority of these genes showed highest expression at gestational day 10.5, suggesting their possible role in the early stage during placental development.

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.

Synthetic Maternal Stress Hormone Can Modulate the Expression of Hox Genes

  • Yu, Sook-Jin;Lee, Ji-Yeon;Kim, Sang-Hoon;Deocaris, Custer C.;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.249-255
    • /
    • 2009
  • All living things have been developed efficient strategies to cope with external and internal environmental changes via a process termed 'homeostasis'. However, chronic prenatal maternal stress may significantly contributes to pregnancy complications by disturbing hypothalamic-pituitary-adrenal (HPA) axis and the automatic nervous system (ANS), and results in unfavorable development of the fetus. Dysregulation of these two major stress response systems lead to the increased secretion of the glucocorticoids (GCs) which are known to be essential for normal development and the maturation of the central nervous system. As Hox genes are master key regulators of the embryonic morphogenesis and cell differentiation, we aimed to determine the effects of dexamethasone, a potent synthetic glucocorticoid, on gene expression in mesenchymal stem cell C3H10T1/2. Analysis of 39 Hox genes based on reverse transcription PCR (RT-PCR) method revealed that the expression patterns of Hox genes were overall upregulated by long dexametasone treatment. These results indicate that maternal stress may have a deleterious effect on early developing embryo through the stress hormone, glucocorticoid.

  • PDF

Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

  • Wang, Lu;Jiang, Rong;Song, Shu-Dan;Hua, Zi-Sen;Wang, Jian-Wei;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3715-3721
    • /
    • 2015
  • Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

ER Stress-Induced Jpk Expression and the Concomitant Cell Death

  • Kim Hye Sun;Chung Hyunjoo;Kong Kyoung-Ah;Park Sungdo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • A Jopock (Jpk), a trans-acting factor associating with the position-specific regulatory element of murine Hoxa-7, has shown to have a toxicity to both prokaryotic and eukaryotic cells when overexpressed. Since Jpk protein harbors a transmembrane domain and a putative endoplasmic reticulum (ER)-retention signal at the N-terminus, a subcellular localization of the protein was analyzed after fusing it into the green fluorescent protein (GFP): Both N-term (Jpk-EGFP) and C-term tagged-Jpk (EGFP-Jpk) showed to be localized in the ER when analyzed under the fluorescence microscopy after staining the cells with ER- and MitoTracker. Since ER stress triggers the ER-stress mediated apoptosis to eliminate the damaged cells, we analyzed the expression pattern of Jpk under ER-stress condition. When MCF7 cells were treated with the ER-stress inducer such as DTT and EGTA, the expression of Jpk was upregulated at the transcriptional level like that of Grp78, a molecular chaperone well known to be overexpressed under ER-stress condition. In the presence of high concentration of ER-sterss inducer (10 mM), about 70 (DTT) to $95\%$ (EGTA) of cells died stronly expressing ($10\~12$ fold) Jpk. Whereas at the low concentration ($0.001\~1.0\;mM$) of the inducer, the expression of Jpk was increased about 2.5 (EGTA) to 5 fold (DTT), which is rather similar to those of ER chaperone protein Grp78. These results altogether indicate that the ER-stress upregulated the expression of Jpk and the excess stress induces the ER-stress induced apoptosis and the concomitant expression of Jpk.

  • PDF

Optimal Derivation Timing for Establishment of Porcine Embryonic Stem Cells (돼지 배아줄기세포 확립을 위한 최적의 유도시기)

  • Kim, Eun-Hye;Cheong, Seung-A;Yoon, Junchul David;Jeon, Yubyeol;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A lot of works have been dedicated to clarify the reasons why the establishment of embryonic stem cells (ESCs) from pig is more difficult than that from mouse and human. Several concomitant factors such as culture condition including feeder layer, sensitivity of cell to cell contact, definitive markers of pluripotency for evaluation of the validity and optimal timing of derivation have been suggested as the disturbing factors in the establishment of porcine ESCs Traditionally, attempts to derive stem cells from porcine embryos have depend on protocols established for mouse ESCs using inner cell mass (ICM) for the isolation and culture. And more recently, protocols used for primate ESCs were also applied. However, there is no report for the establishment of porcine ESCs. Indeed, ungulate species including pigs have crucial developmental differences unlike rodents and primates. Here we will review recent studies about issues for establishment of porcine ESCs and discuss the promise and strategies focusing on the timing for derivation and pluripotent state of porcine ESCs.

Normal and Abnormal Development of the Heart (심장의 정상 및 이상발생)

  • Seo, Jeong-Uk;Choe, Jeong-Yeon;Seo, Gyeong-Pil;Ji, Je-Geun
    • Journal of Chest Surgery
    • /
    • v.29 no.2
    • /
    • pp.136-146
    • /
    • 1996
  • Studies on normal human embryos and on malformed human hearts have been two main sources of the information on the developmental cardiology, Recent advances in the biological technology has opened a new era and descriptive embryology is being shifted into dynamic developmental biology. In this review, we discuss the current understanding on the cardiac embryology relevant to clinical practices of pediatric cardiology. Classical cardiac embryology starts with understanding on five segments of a straight heart tube : the sinus venosus, the primitive atria, the embryonic left ventricle, the embryonic right ventricle and the truncus arteriosus. Key steps in the normal morphogenetic process are the complex spiral septation of ventriculoarterial junction and two jumping connections : between the embryonic right atrium and embryonic right ventricle, and between the embryonic left ventricle and the aorta. Only after these two steps are successfully completed, the third fetal stage tak s place, when myocardial growth and remodeling take place There are two outstanding progresses on the cardiac embryology during recent five-year period. One is immunohistochemical mapping of the conduction system in the developing heart and the other is the understanding on the neural crest cell migration followed by molecular detection of the microdeletion of chromosome 22. A balanced progress of classical morphological studies, modern biological technics and advanced clinical medicine is an urgent task for doctors and scientists dealing with children with sick hearts.

  • PDF

Grp78 is a Novel Downstream Target Gene of Hoxc8 Homeoprotein

  • Kang, Jin-Joo;Bok, Jin-Woong;Kim, Myoung-Hee
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Previously, we have identified 14 putative downstream target genes of Hoxc8 homeoprotein in F9 murine embryonic teratocarcinoma cells through proteomics analysis. Among those, we tested a possibility of a DNA-k type molecular chaperone, Grp78, as a direct downstream target of Hoxc8, by cloning a 2.4 kb upstream region of murine Grp78 into a reporter plasmid and by testing if Hoxc8 can regulate its expression. We observed that Hoxc8 proteins could transactivate the reporter gene, which was affected by small interference RNAs (siRNAs) against to Hoxc8, suggesting that Grp78 is a novel downstream target of Hoxc8 in vivo.

Effect of Trichostatin A on Anti HepG2 Liver Carcinoma Cells: Inhibition of HDAC Activity and Activation of Wnt/β-Catenin Signaling

  • Shi, Qing-Qiang;Zuo, Guo-Wei;Feng, Zi-Qiang;Zhao, Lv-Cui;Luo, Lian;You, Zhi-Mei;Li, Dang-Yang;Xia, Jing;Li, Jing;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7849-7855
    • /
    • 2014
  • Purpose: To investigate the effect of deacetylase inhibitory trichostatin A (TSA) on anti HepG2 liver carcinoma cells and explore the underlying mechanisms. Materials and Methods: HepG2 cells exposed to different concentrations of TSA for 24, 48, or 72h were examined for cell growth inhibition using CCK8, changes in cell cycle distribution with flow cytometry, cell apoptosis with annexin V-FTIC/PI double staining, and cell morphology changes under an inverted microscope. Expression of ${\beta}$-catenin, HDAC1, HDAC3, H3K9, CyclinD1 and Bax proteins was tested by Western blotting. Gene expression for ${\beta}$-catenin, HDAC1and HDAC3 was tested by q-PCR. ${\beta}$-catenin and H3K9 proteins were also tested by immunofluorescence. Activity of Renilla luciferase (pTCF/LEF-luc) was assessed using the Luciferase Reporter Assay system reagent. The activity of total HDACs was detected with a HDACs colorimetric kit. Results: Exposure to TSA caused significant dose-and time-dependent inhibition of HepG2 cell proliferation (p<0.05) and resulted in increased cell percentages in G0/G1 and G2/M phases and decrease in the S phase. The apoptotic index in the control group was $6.22{\pm}0.25%$, which increased to $7.17{\pm}0.20%$ and $18.1{\pm}0.42%$ in the treatment group. Exposure to 250 and 500nmol/L TSA also caused cell morphology changes with numerous floating cells. Expression of ${\beta}$-catenin, H3K9and Bax proteins was significantly increased, expression levels of CyclinD1, HDAC1, HDAC3 were decreased. Expression of ${\beta}$-catenin at the genetic level was significantly increased, with no significant difference in HDAC1and HDAC3 genes. In the cytoplasm, expression of ${\beta}$-catenin fluorescence protein was not obvious changed and in the nucleus, small amounts of green fluorescence were observed. H3K9 fluorescence protein were increased. Expression levels of the transcription factor TCF werealso increased in HepG2 cells following induction by TSA, whikle the activity of total HDACs was decreased. Conclusions: TSA inhibits HDAC activity, promotes histone acetylation, and activates Wnt/${\beta}$-catenin signaling to inhibit proliferation of HepG2 cell, arrest cell cycling and induce apoptosis.

Down-regulation of Phosphoglucose Isomerase/Autocrine Motility Factor Enhances Gensenoside Rh2 Pharmacological Action on Leukemia KG1α Cells

  • You, Zhi-Mei;Zhao, Liang;Xia, Jing;Wei, Qiang;Liu, Yu-Min;Liu, Xiao-Yan;Chen, Di-Long;Li, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1099-1104
    • /
    • 2014
  • Aims and Background: Ginsenoside Rh2, which exerts the potent anticancer action both in vitro and in vivo, is one of the most well characterized ginsenosides extracted from ginseng. Although its effects on cancer are significant, the underlying mechanisms remain unknown. In this study, we sought to elucidate possible links between ginsenoside Rh2 and phosphoglucose isomerase/autocrine motility factor (PGI/AMF). Methods: $KG1{\alpha}$, a leukemia cell line highly expressing PGI/AMF was assessed by western blot analysis and reverse transcription- PCR (RT-PCR) assay after transfection of a small interfering (si)-RNA to silence PGI/AMF. The effect of PGI/AMF on proliferation was measured by typan blue assay and antibody array. A cell counting kit (CCK)-8 and flow cytometry (FCM) were adopted to investigate the effects of Rh2 on PGI/AMF. The relationships between PGI/AMF and Rh2 associated with Akt, mTOR, Raptor, Rag were detected by western blot analysis. Results: KG1${\alpha}$ cells expressed PGI/AMF and its down-regulation significantly inhibited proliferation. The antibody array indicated that the probable mechanism was reduced expression of PARP, State1, SAPK/JNK and Erk1/2, while those of PRAS40 and p38 were up-regulated. Silencing of PGI/AMF enhanced the sensibility of $KG1{\alpha}$ to Rh2 by suppressing the expression of mTOR, Raptor and Akt. Conclusion: These results suggested that ginsenoside Rh2 suppressed the proliferation of $KG1{\alpha}$, the same as down-regulation of PGI/AMF. Down-regulation of PGI/AMF enhanced the pharmacological effects of ginsenoside Rh2 on KG1${\alpha}$ by reducing Akt/mTOR signaling.