Browse > Article
http://dx.doi.org/10.12750/JET.2013.28.1.1

Optimal Derivation Timing for Establishment of Porcine Embryonic Stem Cells  

Kim, Eun-Hye (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
Cheong, Seung-A (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
Yoon, Junchul David (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
Jeon, Yubyeol (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
Hyun, Sang-Hwan (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
Publication Information
Journal of Embryo Transfer / v.28, no.1, 2013 , pp. 1-6 More about this Journal
Abstract
A lot of works have been dedicated to clarify the reasons why the establishment of embryonic stem cells (ESCs) from pig is more difficult than that from mouse and human. Several concomitant factors such as culture condition including feeder layer, sensitivity of cell to cell contact, definitive markers of pluripotency for evaluation of the validity and optimal timing of derivation have been suggested as the disturbing factors in the establishment of porcine ESCs Traditionally, attempts to derive stem cells from porcine embryos have depend on protocols established for mouse ESCs using inner cell mass (ICM) for the isolation and culture. And more recently, protocols used for primate ESCs were also applied. However, there is no report for the establishment of porcine ESCs. Indeed, ungulate species including pigs have crucial developmental differences unlike rodents and primates. Here we will review recent studies about issues for establishment of porcine ESCs and discuss the promise and strategies focusing on the timing for derivation and pluripotent state of porcine ESCs.
Keywords
pigs; embryonic stem cells; early embryo development; pluripotent state;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen LR, Shiue YL, Bertolini L, MEDRANO JF, Bondurant RH & Anderson GB. 1999b. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52: 195-212.   DOI   ScienceOn
2 Dvash T & Benvenisty N. 2004. Human embryonic stem cells as a model for early human development. Best Pract. Res. Clin. Obstet. Gynaecol. 18: 929-940.   DOI   ScienceOn
3 Evans MJ & Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156.   DOI   ScienceOn
4 Gardner RL. 1998. Contributions of blastocyst micromanipulation to the study of mammalian development. Bioessays 20: 168-180.   DOI
5 Gardner RL & Beddington RSP. 1988. Multi-lineage 'stem' cells in the mammalian embryo. J. Cell Sci. 11-27.
6 Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W & Smith A. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136: 1063-1069.   DOI   ScienceOn
7 Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady, JP, Staerk J, Carey BW, Lengner CJ, Foreman R & Love J. 2009. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4: 513-524.   DOI   ScienceOn
8 Hochereau-De Reviers M & Perreau C. 1993. In vitro culture of embryonic disc cells from porcine blastocysts. Reprod. Nutr. Dev. 33: 475.   DOI   ScienceOn
9 Hunter RHF. 1974. Chronological and cytological details of fertilization and early embryonic development in the domestic pig, Sus scrofa. Anat. Rec. 178: 169-185.   DOI   ScienceOn
10 Kaji K, Nichols J & Hendrich B. 2007. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development 134:, 1123-1132.   DOI   ScienceOn
11 Keefer CL, Pant D, Blomberg L & Talbot NC. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98: 147-168.   DOI   ScienceOn
12 Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL & Mckay RDG. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448: 196-199.   DOI   ScienceOn
13 Mnotserrat N, De Onate L, Garreta E, Gonzalez F, Adamo A, Eguizabal C, Hafner S, Vassena R & Belmonte JCI. 2012. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21: 815-825.   DOI
14 Vejlsted M, Du Y, Vajta G & Maddox-Hyttel P. 2006a. Posthatching development of the porcine and bovine embryodefining criteria for expected development in vivo and in vitro. Theriogenology 65: 153-165.   DOI   ScienceOn
15 Vejlsted M, Offenberg H, Thorup F & Maddox-Hyttel P. 2006b. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation. Mol. Reprod. Dev. 73: 709-718.   DOI   ScienceOn
16 Li Z, Leung M, Hopper R, Ellenbogen R & Zhang M. 2010. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31: 404-412.   DOI   ScienceOn
17 Moore K & Piedrahita J. 1997. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell. Dev. Biol. Anim. 33: 62-71.
18 Nandivada H, Villa-Diaz LG, O'shea KS, Smith GD, Krebsbach PH & Lahann J. 2011. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat. Protoc. 6: 1037-1043.   DOI   ScienceOn
19 Nichols J & Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell 4, 487-492.   DOI   ScienceOn
20 Notarianni E, Laurie S, Moor R & Evans M. 1990. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. 41: 51-56.
21 O'leary T, Heindryckx B, Lierman S, Van Bruggen D, Goeman JJ, Vandewoestyne M, Deforce D, De Sousa Lopes SMC & De Sutter P. 2012. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat. Biotech. 30: 278-282.   DOI   ScienceOn
22 Talbot N & Blomberg L. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4: 235-254.   DOI   ScienceOn
23 O'leary T, Heindryckx B, Lierman S, Van Der Jeught M, Duggal G, De Sutter P & Chuva De Sousa Lopes SM. 2013. Derivation of human embryonic stem cells using a postinner cell mass intermediate. Nat. Protocols. 8: 254-264.   DOI   ScienceOn
24 Reijo Pera RA, Dejonge C, Bossert N, Yao M, Hwayang JY, Asadi NB, Wong W, Wong C & Firpo MT. 2009. Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation 78: 18-23.   DOI   ScienceOn
25 Rossant J. 2008. Stem cells and early lineage development. cell 132, 527-531.   DOI   ScienceOn
26 Talbot N, Rexroad C Jr, Pursel V, Powell A & Nel N. 1993. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell. Dev. Biol. Anim. 29: 543-554.   DOI
27 Talbot NC & Garrett WM. 2001. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: Development of junctional apparatus and the lethal effects of PBS mediated cell-cell dissociation. Anat. Rec. 264: 101-113.   DOI   ScienceOn
28 Talbot NC, Powell AM & Rexroad CE. 1995. In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42: 35-52.   DOI   ScienceOn
29 Telugu BPV, Ezashi T, Sinha S, Alexenko AP, Spate L, Prather RS & Roberts RM. 2011. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286: 28948-28953.   DOI   ScienceOn
30 Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-gerald C, Zhang K, Melton DA & Eggan K. 2009. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4: 103-106.   DOI   ScienceOn
31 Chen LR, Shiue Y, Bertolini L, Medrano J, Bondurant R & Anderson G. 1999a. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52: 195-212.   DOI   ScienceOn
32 Alberio R, Croxall N & Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripo- tency and self-renewal. Stem Cells Dev. 19: 1627-1636.   DOI   ScienceOn
33 Kirchhof N, Carnwath J, Lemme E, Anastassiadis K, Schler H & Niemann H. 2000. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63: 1698-1705.   DOI   ScienceOn
34 Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR & Saitou M. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34: e42-e42.   DOI   ScienceOn
35 Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Yooung RA, Lee JT, Jaenisch R & Mitalipova M. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-883.   DOI   ScienceOn
36 Blomberg LA, Schreier LL & Talbot NC. 2008. Expression analysis of pluripotency factors in the undiffe- rentiated porcine inner cell mass and epiblast during in vitro culture. Mol. Reprod. Dev. 75: 450-463.   DOI   ScienceOn
37 Brevini TAL, Tosetti V, Crestan M, Antonini S & Gandolfu F. 2007. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 67: 54-63.   DOI   ScienceOn
38 Brons IGM, Smithers LE, Trotter MWB, Rugg Gunn P, Sun B, Chuva De Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersin RA & Vallier L. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448: 191-195.   DOI   ScienceOn
39 Carlin R, Davis D, Weiss M, Schultz B & Troyer D. 2006. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 4: 8.   DOI   ScienceOn