Synthetic Maternal Stress Hormone Can Modulate the Expression of Hox Genes

  • Yu, Sook-Jin (Department of Anatomy, Embryology Lab., Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Lee, Ji-Yeon (Department of Anatomy, Embryology Lab., Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Sang-Hoon (Department of Anatomy, Embryology Lab., Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Deocaris, Custer C. (Department of Anatomy, Embryology Lab., Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine) ;
  • Kim, Myoung-Hee (Department of Anatomy, Embryology Lab., Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine)
  • ;
  • ;
  • ;
  • ;
  • 김명희 (연세대학교 의과대학 해부학교실)
  • Published : 2009.09.30

Abstract

All living things have been developed efficient strategies to cope with external and internal environmental changes via a process termed 'homeostasis'. However, chronic prenatal maternal stress may significantly contributes to pregnancy complications by disturbing hypothalamic-pituitary-adrenal (HPA) axis and the automatic nervous system (ANS), and results in unfavorable development of the fetus. Dysregulation of these two major stress response systems lead to the increased secretion of the glucocorticoids (GCs) which are known to be essential for normal development and the maturation of the central nervous system. As Hox genes are master key regulators of the embryonic morphogenesis and cell differentiation, we aimed to determine the effects of dexamethasone, a potent synthetic glucocorticoid, on gene expression in mesenchymal stem cell C3H10T1/2. Analysis of 39 Hox genes based on reverse transcription PCR (RT-PCR) method revealed that the expression patterns of Hox genes were overall upregulated by long dexametasone treatment. These results indicate that maternal stress may have a deleterious effect on early developing embryo through the stress hormone, glucocorticoid.

Keywords

References

  1. Bellows CG, Heersche JN, Aubin JE. Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol. 1990. 140: 132-138. https://doi.org/10.1016/0012-1606(90)90060-V
  2. Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 1993. 341: 339-341. https://doi.org/10.1016/0140-6736(93)90138-7
  3. Carlson CS, Tulli HM, Jayo MJ, Loeser RF, Tracy RP, Mann KG, Adams MR. Immunolocalization of noncollagenous bone matrix proteins in lumbar vertebrae from intact and surgically menopausal cynomolgus monkeys. J Bone Miner Res. 1993. 8: 71-81. https://doi.org/10.1002/jbmr.5650080110
  4. Chen TL, Feldman D. Glucocorticoid receptors and actions in subpopulations of cultured rat bone cells. Mechanism of dexamethasone potentiation of parathyroid hormone-stimulated cyclic AMP production. J Clin Invest. 1979. 63: 750-758. https://doi.org/10.1172/JCI109359
  5. Choi KM. Corticosteroid therapy for adrenal insufficiency. J Associa Fam Med. 2003. 24: 1-5.
  6. Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bulletin of the Johns Hopkins Hospital 1932. 50: 137-195.
  7. Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T. Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol. 1997. 154: 397-406. https://doi.org/10.1677/joe.0.1540397
  8. Hassan MQ, Saini S, Gordon JA, van Wijnen AJ, Montecino M, Stein JL, Stein GS, Lian JB. Molecular switches involving homeodomain proteins, HOXA10 and RUNX2 regulate osteoblastogenesis. Cells Tissues Organs. 2009. 189: 122-125. https://doi.org/10.1159/000151453
  9. Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR. The mother or the fetus- 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J neurosci. 2006. 26: 3840-3844. https://doi.org/10.1523/JNEUROSCI.4464-05.2006
  10. Hughes DE, Boyce BF. Apoptosis in bone physiology and disease. Mol Pathol. 1997. 50: 132-137. https://doi.org/10.1136/mp.50.3.132
  11. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997. 64: 295-312. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
  12. Kanzler B, Kuschert SJ, Liu YH, Mallo M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 1998. 125: 2587-2597.
  13. Klaus G, Jux C, Fernandez P, Rodriguez J, Himmele R, Mehls O. Suppression of growth plate chondrocyte proliferation by corticosteroids. Pediatr Nephrol. 2000. 14: 612-615. https://doi.org/10.1007/s004670000344
  14. Koehl M, Darnaudery M, Dulluc J, Van Reeth O, Le Moal M, Maccari S. Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol. 1999. 40: 302-315. https://doi.org/10.1002/(SICI)1097-4695(19990905)40:3<302::AID-NEU3>3.0.CO;2-7
  15. Krumlauf R. Hox genes in vertebrate development. Cell 1994. 78: 191-201. https://doi.org/10.1016/0092-8674(94)90290-9
  16. Leboy PS, Beresford JN, Devlin C, Owen ME. Dexamethasone induction of osteoblast mRNAs in rat marrow stromal cell cultures. J Cell Physiol. 1991. 146: 370-378. https://doi.org/10.1002/jcp.1041460306
  17. Lian JB, Shalhoub V, Aslam F, Frenkel B, Green J, Hamrah M, Stein GS, Stein JL Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3-E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D down-regulates osteocalcin gene expression. Endocrinology 1997. 138: 2117-2127. https://doi.org/10.1210/en.138.5.2117
  18. Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 1995. 69: 83-88. https://doi.org/10.1016/0306-4522(95)00256-I
  19. Matthews SG. Antenatal glucocorticoids and programming of developing CNS. Pediatr Res. 2000. 47: 291-300. https://doi.org/10.1203/00006450-200003000-00003
  20. Mattews SG. Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin Neonatol. 2001. 6: 309-317. https://doi.org/10.1053/siny.2001.0066
  21. Mikami Y, Omoteyama K, Kato S, Takagi M. Inductive effects of dexamethasone on the mineralization and the osteoblastic gene expressions in mature osteoblast-like ROS17/2.8 cells. Biochem Biophys Res Commun. 2007. 362: 368-373. https://doi.org/10.1016/j.bbrc.2007.07.192
  22. Murphy VE, Zakar T, Smith R, Giles WB, Gibson PG, Clifton VL. Reduced 11beta-hydroxysteroid dehydrogenase type 2 activity is associated with decreased birth weight centile in pregnancies complicated by asthma. J Clin Endocrinol Metab. 2002. 87: 1660-1668. https://doi.org/10.1210/jc.87.4.1660
  23. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999. 284: 143-147. https://doi.org/10.1126/science.284.5411.143
  24. Ringe J, Kaps C, Schmitt B, Büscher K, Bartel J, Smolian H, Schultz O, Burmester GR, Häupl T, Sittinger M. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res. 2002. 307: 321-327. https://doi.org/10.1007/s00441-002-0525-z
  25. Sapolsky RM. Why stress is bad for your brain. Science 1996a. 273: 749-750. https://doi.org/10.1126/science.273.5276.749
  26. Sapolsky RM. Stress, Glucocorticoids, and Damage to the Nervous System: The Current State of Confusion. Stress 1996b.1: 1-19. https://doi.org/10.3109/10253899609001092
  27. Smith E, Redman RA, Logg CR, Coetzee GA, Kasahara N, Frenkel B. Smith E, Redman RA, Logg CR, Coetzee GA, Kasahara N, Frenkel B. Glucocorticoids inhibit developmental stage-specific osteoblast cell cycle. Dissociation of cyclin A-cyclin-dependent kinase 2 from E2F4-p130 complexes. J Biol Chem. 2000. 275: 19992-20001. https://doi.org/10.1074/jbc.M001758200
  28. Wong MM, Rao LG, Ly H, Hamilton L, Tong J, Sturtridge W, McBroom R, Aubin JE, Murray TM. Long-term effects of physiologic concentrations of dexamethasone on human bone-derived cells. J Bone Miner Res. 1990. 5: 803-813. https://doi.org/10.1002/jbmr.5650050803