DOI QR코드

DOI QR Code

Optimal Derivation Timing for Establishment of Porcine Embryonic Stem Cells

돼지 배아줄기세포 확립을 위한 최적의 유도시기

  • Kim, Eun-Hye (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University) ;
  • Cheong, Seung-A (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University) ;
  • Yoon, Junchul David (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jeon, Yubyeol (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hyun, Sang-Hwan (Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University)
  • 김은혜 (충북대학교 수의과대학 수의학과) ;
  • 정승아 (충북대학교 수의과대학 수의학과) ;
  • 윤준철 (충북대학교 수의과대학 수의학과) ;
  • 전유별 (충북대학교 수의과대학 수의학과) ;
  • 현상환 (충북대학교 수의과대학 수의학과)
  • Received : 2013.02.28
  • Accepted : 2013.03.09
  • Published : 2013.03.31

Abstract

A lot of works have been dedicated to clarify the reasons why the establishment of embryonic stem cells (ESCs) from pig is more difficult than that from mouse and human. Several concomitant factors such as culture condition including feeder layer, sensitivity of cell to cell contact, definitive markers of pluripotency for evaluation of the validity and optimal timing of derivation have been suggested as the disturbing factors in the establishment of porcine ESCs Traditionally, attempts to derive stem cells from porcine embryos have depend on protocols established for mouse ESCs using inner cell mass (ICM) for the isolation and culture. And more recently, protocols used for primate ESCs were also applied. However, there is no report for the establishment of porcine ESCs. Indeed, ungulate species including pigs have crucial developmental differences unlike rodents and primates. Here we will review recent studies about issues for establishment of porcine ESCs and discuss the promise and strategies focusing on the timing for derivation and pluripotent state of porcine ESCs.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Alberio R, Croxall N & Allegrucci C. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripo- tency and self-renewal. Stem Cells Dev. 19: 1627-1636. https://doi.org/10.1089/scd.2010.0012
  2. Blomberg LA, Schreier LL & Talbot NC. 2008. Expression analysis of pluripotency factors in the undiffe- rentiated porcine inner cell mass and epiblast during in vitro culture. Mol. Reprod. Dev. 75: 450-463. https://doi.org/10.1002/mrd.20780
  3. Brevini TAL, Tosetti V, Crestan M, Antonini S & Gandolfu F. 2007. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 67: 54-63. https://doi.org/10.1016/j.theriogenology.2006.09.019
  4. Brons IGM, Smithers LE, Trotter MWB, Rugg Gunn P, Sun B, Chuva De Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersin RA & Vallier L. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448: 191-195. https://doi.org/10.1038/nature05950
  5. Carlin R, Davis D, Weiss M, Schultz B & Troyer D. 2006. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 4: 8. https://doi.org/10.1186/1477-7827-4-8
  6. Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, Cowan C, Fitz-gerald C, Zhang K, Melton DA & Eggan K. 2009. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell 4: 103-106. https://doi.org/10.1016/j.stem.2008.12.001
  7. Chen LR, Shiue Y, Bertolini L, Medrano J, Bondurant R & Anderson G. 1999a. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52: 195-212. https://doi.org/10.1016/S0093-691X(99)00122-3
  8. Chen LR, Shiue YL, Bertolini L, MEDRANO JF, Bondurant RH & Anderson GB. 1999b. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52: 195-212. https://doi.org/10.1016/S0093-691X(99)00122-3
  9. Dvash T & Benvenisty N. 2004. Human embryonic stem cells as a model for early human development. Best Pract. Res. Clin. Obstet. Gynaecol. 18: 929-940. https://doi.org/10.1016/j.bpobgyn.2004.06.005
  10. Evans MJ & Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156. https://doi.org/10.1038/292154a0
  11. Gardner RL. 1998. Contributions of blastocyst micromanipulation to the study of mammalian development. Bioessays 20: 168-180. https://doi.org/10.1002/(SICI)1521-1878(199802)20:2<168::AID-BIES9>3.0.CO;2-P
  12. Gardner RL & Beddington RSP. 1988. Multi-lineage 'stem' cells in the mammalian embryo. J. Cell Sci. 11-27.
  13. Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W & Smith A. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136: 1063-1069. https://doi.org/10.1242/dev.030957
  14. Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady, JP, Staerk J, Carey BW, Lengner CJ, Foreman R & Love J. 2009. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4: 513-524. https://doi.org/10.1016/j.stem.2009.04.015
  15. Hochereau-De Reviers M & Perreau C. 1993. In vitro culture of embryonic disc cells from porcine blastocysts. Reprod. Nutr. Dev. 33: 475. https://doi.org/10.1051/rnd:19930508
  16. Hunter RHF. 1974. Chronological and cytological details of fertilization and early embryonic development in the domestic pig, Sus scrofa. Anat. Rec. 178: 169-185. https://doi.org/10.1002/ar.1091780203
  17. Kaji K, Nichols J & Hendrich B. 2007. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development 134:, 1123-1132. https://doi.org/10.1242/dev.02802
  18. Keefer CL, Pant D, Blomberg L & Talbot NC. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98: 147-168. https://doi.org/10.1016/j.anireprosci.2006.10.009
  19. Kirchhof N, Carnwath J, Lemme E, Anastassiadis K, Schler H & Niemann H. 2000. Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63: 1698-1705. https://doi.org/10.1095/biolreprod63.6.1698
  20. Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR & Saitou M. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 34: e42-e42. https://doi.org/10.1093/nar/gkl050
  21. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Yooung RA, Lee JT, Jaenisch R & Mitalipova M. 2010. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141: 872-883. https://doi.org/10.1016/j.cell.2010.04.010
  22. Li Z, Leung M, Hopper R, Ellenbogen R & Zhang M. 2010. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31: 404-412. https://doi.org/10.1016/j.biomaterials.2009.09.070
  23. Mnotserrat N, De Onate L, Garreta E, Gonzalez F, Adamo A, Eguizabal C, Hafner S, Vassena R & Belmonte JCI. 2012. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21: 815-825. https://doi.org/10.3727/096368911X601019
  24. Moore K & Piedrahita J. 1997. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell. Dev. Biol. Anim. 33: 62-71.
  25. Nandivada H, Villa-Diaz LG, O'shea KS, Smith GD, Krebsbach PH & Lahann J. 2011. Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat. Protoc. 6: 1037-1043. https://doi.org/10.1038/nprot.2011.342
  26. Nichols J & Smith A. 2009. Naive and primed pluripotent states. Cell Stem Cell 4, 487-492. https://doi.org/10.1016/j.stem.2009.05.015
  27. Notarianni E, Laurie S, Moor R & Evans M. 1990. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. 41: 51-56.
  28. O'leary T, Heindryckx B, Lierman S, Van Bruggen D, Goeman JJ, Vandewoestyne M, Deforce D, De Sousa Lopes SMC & De Sutter P. 2012. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat. Biotech. 30: 278-282. https://doi.org/10.1038/nbt.2135
  29. O'leary T, Heindryckx B, Lierman S, Van Der Jeught M, Duggal G, De Sutter P & Chuva De Sousa Lopes SM. 2013. Derivation of human embryonic stem cells using a postinner cell mass intermediate. Nat. Protocols. 8: 254-264. https://doi.org/10.1038/nprot.2012.157
  30. Reijo Pera RA, Dejonge C, Bossert N, Yao M, Hwayang JY, Asadi NB, Wong W, Wong C & Firpo MT. 2009. Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation 78: 18-23. https://doi.org/10.1016/j.diff.2009.03.004
  31. Rossant J. 2008. Stem cells and early lineage development. cell 132, 527-531. https://doi.org/10.1016/j.cell.2008.01.039
  32. Talbot N & Blomberg L. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4: 235-254. https://doi.org/10.1007/s12015-008-9026-0
  33. Talbot N, Rexroad C Jr, Pursel V, Powell A & Nel N. 1993. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell. Dev. Biol. Anim. 29: 543-554. https://doi.org/10.1007/BF02634148
  34. Talbot NC & Garrett WM. 2001. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: Development of junctional apparatus and the lethal effects of PBS mediated cell-cell dissociation. Anat. Rec. 264: 101-113. https://doi.org/10.1002/ar.1141
  35. Talbot NC, Powell AM & Rexroad CE. 1995. In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42: 35-52. https://doi.org/10.1002/mrd.1080420106
  36. Telugu BPV, Ezashi T, Sinha S, Alexenko AP, Spate L, Prather RS & Roberts RM. 2011. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J. Biol. Chem. 286: 28948-28953. https://doi.org/10.1074/jbc.M111.229468
  37. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL & Mckay RDG. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448: 196-199. https://doi.org/10.1038/nature05972
  38. Vejlsted M, Du Y, Vajta G & Maddox-Hyttel P. 2006a. Posthatching development of the porcine and bovine embryodefining criteria for expected development in vivo and in vitro. Theriogenology 65: 153-165. https://doi.org/10.1016/j.theriogenology.2005.09.021
  39. Vejlsted M, Offenberg H, Thorup F & Maddox-Hyttel P. 2006b. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation. Mol. Reprod. Dev. 73: 709-718. https://doi.org/10.1002/mrd.20461