• Title/Summary/Keyword: embedded design

Search Result 2,217, Processing Time 0.033 seconds

A study on digital locking device design using detection distance 13.4mm of human body sensing type magnetic field coil (인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구)

  • Lee, In-Sang;Song, Je-Ho;Bang, Jun-Ho;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study evaluated a digital locking device design using detection distance of 13.4mm of a human body sensing type magnetic field coil. In contrast to digital locking devices that are used nowadays, the existing serial number entering buttons, lighting, number cover, corresponding pcb, exterior case, and data delivery cables have been deleted and are only composed of control ON/OFF power switches and emergency terminals. When the magnetic field coil substrates installed inside the inner case detects the electric resistance delivered from the opposite side of the 12mm interval exterior contacting the glass body part, the corresponding induced current flows. At this time, the magnetic field coil takes the role as a sensor when coil frequency of the circular coil is transformed. The magnetic coil as a sensor detects a change in the oscillation frequency output before and after the body is detected. This is then amplified to larger than 2,000%, transformed into digital signals, and delivered to exclusive software to compare and search for embedded data. The detection time followed by the touch area of the body standard to a $12.8{\emptyset}$ magnetic field coil was 30% contrast at 0.08sec and 80% contrast at 0.03sec, in which the detection distance was 13.4mm, showing the best level.

A Design and Implementation of ZigBee Educational System in USN Environment (USN환경에서 교육용 ZigBee 장비의 설계 및 구현)

  • Park, Gyun Deuk;Chung, Joong Soo;Jung, Kwang Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.5
    • /
    • pp.335-340
    • /
    • 2013
  • This paper has designed and realized educational ZigBee equipment befitting to the USN environment. In addition, this study has enabled users to exercise operation process for software technology education and to propose software design methods in the process in the USN environment through practice equipment for ZigBee education. As for the development environment of system, Atmega128 process of Atmel is used for CPU; AVR compiler for the debugging environment; C language for firmware development language; and C++ for application program. The system operation process is initiated by coordinator's sensing information reading order from the hyper terminal through a server through the Internet or directly connected; and then delivering it to a terminating device by using ZigBee technology. The terminating device delivers various sensing information to the coordinator which delivers it to a server through the Internet or to a HYPER terminal directly connected to the coordinator. As for the educational course, it is about practices on such ZigBee operation process and relevant programing skills. Regarding it, the communication between coordinator and terminating device is designed by utilizing physical layer of ZigBee protocol, MAC layer and network layer while the communication between server and coordinator is designed by proposing an independent protocol on TCP/IP socket and the protocol processing procedure during sensing data delivery is verified by interpretation.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

Processor Design Technique for Low-Temperature Filter Cache (필터 캐쉬의 저온도 유지를 위한 프로세서 설계 기법)

  • Choi, Hong-Jun;Yang, Na-Ra;Lee, Jeong-A;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Recently, processor performance has been improved dramatically. Unfortunately, as the process technology scales down, energy consumption in a processor increases significantly whereas the processor performance continues to improve. Moreover, peak temperature in the processor increases dramatically due to the increased power density, resulting in serious thermal problem. For this reason, performance, energy consumption and thermal problem should be considered together when designing up-to-date processors. This paper proposes three modified filter cache schemes to alleviate the thermal problem in the filter cache, which is one of the most energy-efficient design techniques in the hierarchical memory systems : Bypass Filter Cache (BFC), Duplicated Filter Cache (DFC) and Partitioned Filter Cache (PFC). BFC scheme enables the direct access to the L1 cache when the temperature on the filter cache exceeds the threshold, leading to reduced temperature on the filter cache. DFC scheme lowers temperature on the filter cache by appending an additional filter cache to the existing filter cache. The filter cache for PFC scheme is composed of two half-size filter caches to lower the temperature on the filter cache by reducing the access frequency. According to our simulations using Wattch and Hotspot, the proposed partitioned filter cache shows the lowest peak temperature on the filter cache, leading to higher reliability in the processor.

Study of Organic-inorganic Hybrid Dielectric for the use of Redistribution Layers in Fan-out Wafer Level Packaging (팬 아웃 웨이퍼 레벨 패키징 재배선 적용을 위한 유무기 하이브리드 유전체 연구)

  • Song, Changmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2018
  • Since the scaling-down of IC devices has been reached to their physical limitations, several innovative packaging technologies such as 3D packaging, embedded packaging, and fan-out wafer level packaging (FOWLP) are actively studied. In this study the fabrication of organic-inorganic dielectric material was evaluated for the use of multi-structured redistribution layers (RDL) in FOWLP. Compared to current organic dielectrics such as PI or PBO an organic-inorganic hybrid dielectric called polysilsesquioxane (PSSQ) can improve mechanical, thermal, and electrical stabilities. polysilsesquioxane has also an excellent advantage of simultaneous curing and patterning through UV exposure. The polysilsesquioxane samples were fabricated by spin-coating on 6-inch Si wafer followed by pre-baking and UV exposure. With the 10 minutes of UV exposure polysilsesquioxane was fully cured and showed $2{\mu}m$ line-pattern formation. And the dielectric constant of cured polysilsesquioxane dielectrics was ranged from 2.0 to 2.4. It has been demonstrated that polysilsesquioxane dielectric can be patterned and cured by UV exposure alone without a high temperature curing process.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

A Design and Implementation of Health Schedule Application

  • Ji Woo Kim;Young Min Lee;Won Joo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.99-106
    • /
    • 2024
  • In this paper, we design and implement the HealthSchedule app, which records exercise data based on the GPS sensor embedded in smartphones. This app utilizes the smartphone's GPS sensor to collect real-time location information of the user and displays the movement path to the designated destination. It records the user's actual path using latitude and longitude coordinates. Users register exercise activities and destination points when scheduling, and initiate the exercise. When measuring the current location, a lime green departure marker is generated, and the movement path is displayed in blue, with the destination marker and a surrounding 25-meter radius circle shown in sky blue. Using the coordinates of the starting point or the previous location and the current GPS sensor-transmitted location coordinates, it measures the distance traveled, time taken, and calculates the speed. Furthermore, it accumulates measurement data to provide information on the total distance traveled, movement path, and overall average speed. Even when reaching the destination during exercise, the movement path continues to accumulate until the completion button is clicked. The completion button is activated when the user moves into the sky blue circular area with a radius of 25 meters, centered around the initially set destination. This means that the user must reach the designated destination, and if they wish to continue exercising without clicking the completion button, they can do so. Depending on the selected exercise type, the app displays the calories burned, aiming to increase user engagement and a sense of accomplishment.

Hybrid Scheme of Data Cache Design for Reducing Energy Consumption in High Performance Embedded Processor (고성능 내장형 프로세서의 에너지 소비 감소를 위한 데이타 캐쉬 통합 설계 방법)

  • Shim, Sung-Hoon;Kim, Cheol-Hong;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.166-177
    • /
    • 2006
  • The cache size tends to grow in the embedded processor as technology scales to smaller transistors and lower supply voltages. However, larger cache size demands more energy. Accordingly, the ratio of the cache energy consumption to the total processor energy is growing. Many cache energy schemes have been proposed for reducing the cache energy consumption. However, these previous schemes are concerned with one side for reducing the cache energy consumption, dynamic cache energy only, or static cache energy only. In this paper, we propose a hybrid scheme for reducing dynamic and static cache energy, simultaneously. for this hybrid scheme, we adopt two existing techniques to reduce static cache energy consumption, drowsy cache technique, and to reduce dynamic cache energy consumption, way-prediction technique. Additionally, we propose a early wake-up technique based on program counter to reduce penalty caused by applying drowsy cache technique. We focus on level 1 data cache. The hybrid scheme can reduce static and dynamic cache energy consumption simultaneously, furthermore our early wake-up scheme can reduce extra program execution cycles caused by applying the hybrid scheme.

Long-Term Behavior of CFRP Strips under Sustained Loads (지속하중을 받는 탄소섬유판의 장기 거동)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

Analyzing System of Fuel Filter Based on Temperature and Pressure Measurement for Diesel Cars (온도 및 압력 측정에 기반을 둔 디젤 차량의 연료필터 분석 시스템)

  • Jang, Young-Sung;Lee, Bo-Hee;Yoon, Dal-Hwan;Kim, Jin-Geol;Son, Byeong-Min
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.383-391
    • /
    • 2014
  • In this paper, temperature, pressure and flow analysis system for testing a fuel filter of a diesel engine at the low-temperature environment in winter, is proposed. The light oil of diesel engine below a specific temperature is changed to the waxing materials like paraffin, and it prevents engine to start easily because of reducing fluidity. Thus, built-in block heater should be installed with fuel filter in order to solve this problem. And it is necessary to design evaluation system that can analyze the performance according to temperature, pressure and flow characteristics near fuel filter at a very low temperature. In this paper, we measured a physical quantity related to the performance of around the fuel filter using the proposed system, and analyzed their characteristics. Also the measured data is transferred to remote user by using a web server of embedded systems, and analyzed their conditions in remote place via web browser in order to know the operating status of fuel filter. We installed the proposed system in a small test chamber to verify the performance and took an experiment in normal temperature and very low temperature, and could obtain temperature, pressure and flow of near the fuel filter. As a result, the fuel flow could be improved during operation of the fuel heater.