• Title/Summary/Keyword: embedded connection

Search Result 164, Processing Time 0.027 seconds

Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material (압전재료를 이용한 위성체 구조물의 열 진동 제어)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

Inelastic Behavior of Continuous Precast Composite Slabs (연속 프리캐스트 합성바닥판의 비탄성 거동)

  • Shim Chang-Su;Chung Young Soo;Min Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

Facebook Me Right: Needs-Based Segmentation of Facebook Brand Page Users

  • Lee, Kiwon;Lim, Heejin
    • Fashion, Industry and Education
    • /
    • v.15 no.1
    • /
    • pp.12-28
    • /
    • 2017
  • In the era of social media, marketers have struggled to understand and serve participants' diverse and multifaceted needs in a novel form of online brand community in the social-networking sites such as Facebook. Thus, this study identifies different groups of participants affiliated with Facebook brand pages based on their needs for brand connection. The need-based segments are validated by comparing results across foodservice and consumer goods. Results of cluster analysis reveal three distinct segments (i.e., residents, lurkers, and peepers) based on participants' functional, experiential, and incentive needs. Results of multivariate analysis of variance illustrate significant differences in relational tendencies for a brand of interest among these three groups. The three groups are profiled based on participants' engagement level. Findings of this study are expected to help marketers better understand the needs of diverse participants in their SNS-embedded brand community so they can develop tailored communication strategies for targeted groups.

Seismic Behavior of Steel Coupling Beams (철골 커플링 보의 내진거동)

  • Park Wan-Shin;Yun Hyun-Do;Hwang Sun-Kyung;Han Byung-Chan;Han Min-Ki;Lee Jong-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. The cyclic response of steel coupling beams embedded into reinforced concrete boundary elements was studied. Three half-scale subassemblies representing a portion of a prototype structure were designed. constructed, and tested. The main test variables were the connection details of hybrid coupled shear wall. These efforts have resulted in details for increasing the seismic capacity of steel coupling beam in the seismic behavior of buildings.

  • PDF

Implementation of UPnP AV Media Server Based on a Embedded Linux (임베디드 리눅스 기반 UPnP AV 미디어 서버의 구현)

  • Lee Dong-Hoon;Bae Su-Young;Cho Chang-Sik;Mah Pyeong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.183-186
    • /
    • 2004
  • UPnP 미디어 서버는 UPnP AV 아키텍처에서 컨트롤 포인터에게 서버와 서버에 저장되어 있는 컨텐츠에 대한 정보를 제공하기 위해서 구현되는 미들웨어이다. 보아 서버와 MPlayer로 구현되는 스트리밍 환경에서 UPnP AV 아키텍처는 각 디바이스를 발견하고 정보와 서비스를 질의하며 스트리밍 서비스를 설정하고 제어할 수 있는 기능을 제공한다. 본 논문에서의 UPnP 미디어 서버는 리눅스 셋탑 환경에서 동작하며, 서비스를 제공하는 AV 컨텐츠에 대한 정보를 제공하고 질의를 처리하기 위한 컨텐츠 디렉토리(Content Directory) 서비스와 미디어 서버, 타겟 디바이스 사이에서 전송 프로토콜과 데이터 포맷을 조율하기 위한 커넥션 메니저 (Connection Manager) 서비스를 구현하였다. 미디어 서버는 XML 기반의 DIDL로 기술된 메타 데이터를 이용하여 서버의 컨텐츠 정보를 관리하며, 컨트롤 포인터의 요청을 맞게 정보를 재구성하여 전달한다.

  • PDF

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

Implementation of a Wi-Fi Based Cluster System using Raspberry Pi for Multidisciplinary Education

  • Koo, Geum-Seo;Sim, Gab-Sig
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, we implemented a Wi-Fi based cluster system using raspberry pi for multidisciplinary education. The cluster implementation on the desktop was more difficult to maintain the complexity, big size, high price, power consumption as the number of nodes increased. In this paper, we implemented a cluster using Raspberry Pi, which is developed for educational purposes, to reduce the cost of connecting nodes. In addition, the complexity of system construction is reduced by replacing the connection between each node with Wi-Fi. Also, the inconvenience of configuration due to node increase was reduced. It is expected that the implementation of the cluster will be a good alternative in the educational environment where distributed processing and parallel processing are performed in the embedded environment. Also, it is confirmed that it can be applied to the multidisciplinary education.

Internet of Things: An Overview and its Applications in Aviation (항공 분야에서의 사물인터넷 기술 현황)

  • Hyun, WooSeok
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.100-107
    • /
    • 2020
  • Internet of Things (IoT) is a technology that communicates data between devices, which are things, using an embedded sensor connected through network backbone such as the internet. Here, data communication technology, sensor technology, and actuator (interface) technology are fused into IoT and it turns devices into smart things. As a result, vast sized data are being generated and that data is being processed into useful actions that can control the things that are devices to make our lives much fruitful. Nowadays, the IoT, early defined as Machine-to-Machine (M2M) connection, becomes a key technology powered by growing innovation of wireless communication trends in the internet connectivity through mobile networking. This paper gives an overview of Internet of Things and brief information about major technologies and its applications in various fields focusing aviation.

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Utilization of Waste Tires as Soil Reinforcement; (1) Soil Reinforcing Effect (지반보강재로서 폐타이어의 활용; (1) 지반보강 효과)

  • 윤여원;최경순;윤길림;김방식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.107-117
    • /
    • 2004
  • This paper is to investigate the reinforcing effects of newly devised Tire-cell mat made of waste tires in sand. Parametric study on number of connection bolts between Tirecells, relative density of sand, embedded depth, number of reinforced layers and width of Tirecell mat was made by using plate loading tests. It is found that the number of connection bolt was enough to maintain the given pressure. The bearing capacity ratio(BCR), which is defined as the rate of ultimate bearing capacity of reinforced soil to that of unreinforced soil, is the highest at the lowest density. And the reinforcing effect can be obtained in case of embedded depth within 1.0B, where B is loading width. Also settlement reduction is the highest at the lowest density of sand. The effect of number of Tirecell reinforced layers with 0.4B to 0.5B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially, the bearing capacity increased remarkably at 1 layer of reinforcement and the degree of increase was small from 1 layer to 2 layers of reinforcement. The effect of mat width of Tirecell was not significant because of high stiffness of Tirecell although the maximum bearing capacity was shown at the 2.0B mat width and the reinforcing effects of Tirecell, in general, was prominent compared with those of commercial Geoweb.