• Title/Summary/Keyword: elution rate

Search Result 243, Processing Time 0.024 seconds

Analysis of Organic Matter and Nutrient Leaching Characteristics of Agricultural Land Soils in Reservoir Area (저수구역 경작지 토양의 유기물 및 영양염류 용출특성 분석)

  • Yu, Nayeong;Shin, Minhwan;Lim, Jungha;Kum, Donghyuk;Nam, Changdong;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Soils in agricultural lands contain large amount of organic matter and nutrients due to the injected fertilizers and manure. During heavy rain, surface water and base runoff pollutants flows into a nearby stream or lake with eroded soil from agricultural lands. On the other hands, agricultural lands near the lake are inundated due to the increase of the water level in the lake, leading to organic matter and nutrient release from the inundated soil. In this study, releasing rates of nutrient salts and organic substances were analyzed for the soil in the agricultural land, where cultivation activities has been carried out and periodically flooded, to account for the possibility of contamination from the inundated agricultural land in reservoir areas The experiment results have shown that COD was released from the soil in anaerobic conditions, and T-P was released in both anaerobic and aerobic conditions. However, in the case of T-N, it was found that the runoff by soil was not made before the rainfall occurred, and when the soil was impound due to rainfall, the elution occurred under the aerobic conditions. Through the results of this study, it was possible to account for the effect of flooded agricultural lands on the water quality in the lake, and this could be reflected in an efficient agricultural non-point pollution management policy. In order to determine the precise releasing rate for each agricultural land, it is believed that the leaching experiment for paddy fields and grasslands are needed.

A Dilute-and-Shoot LC-MS/MS Method for Screening of 43 Cardiovascular Drugs in Human Urine

  • Pham, Thuy-Vy;Lee, Gunhee;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Nguyen, Thi Ngoc Van;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • A simple, specific, and economical LC-MS/MS method was investigated for the screening of 43 prescribed antihypertensive and related drugs in human urine. The urine samples were simply prepared by diluting and mixing with internal standard before directly introduced to the LC-MS/MS system, which is fast, straightforward, and cost-effective. Fractional factorial, Box-Behnken, and I-optimal design were applied to screen and optimize the mass spectrometric and chromatographic factors. The analysis was carried out on a triple quadrupole mass spectrometer system utilizing multiple reaction monitoring with positive and negative electrospray ionization method. Chromatographic separation was performed on a Thermo Scientific Accucore RP-MS column (50 × 3.0 mm ID., 2.6 ㎛) using two separate gradient elution programs established with the same mobile phases. Chromatographic separation was performed within 12 min. The optimal method was validated based on FDA guideline. The results indicated that the assay was specific, reproducible, and sensitive with the limit of detection from 0.1 to 50.0 ㎍/L. The method was linear for all analytes with coefficient of determination ranging from 0.9870 to 0.9981. The intra-assay precision was from 1.44 to 19.87% and the inter-assay precision was between 2.69 and 18.54% with the recovery rate ranges from 84.54 to 119.78% for all drugs measured. All analytes in urine samples were stable for 24 h at 25℃, and for 2 weeks at -60℃. The developed method improves on currently existing methods by including larger number of cardiovascular medications and better sensitivity of 12 analytes.

Evaluation of Engineering Properties in Synthetic Polymer-Silica Sol Grout (합성폴리머 실라카졸 그라우트의 공학적 특성 평가)

  • Jang, Seong-Min;Jung, Hyuk-Sang;Kim, Jeong-Han;Min, Byung-Chan;Lee, Byeong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • The engineering characteristics of synthetic polymer-silica sol, which has the effect of reducing leakage, was evaluate and compared with typical grouting material, the water glass-based SGR injection material in this study. The result of the laboratory tests on strength and durability about the synthetic polymer-silica sol showed more than twice as high as LW-based injection materials in uniaxial compressive strength, significantly lower values in shrinkage rate and permeability. The result of pH was less than 8.5 (the drinking water quality standard). As a result of the leaching test, the Na2O elution amount of the synthetic polymer-silica sol was measured to be 3 to 4 times smaller than that of the water glass grout. These results be assumed that the synthetic polymer-silica sol has better durability and permeability than those of the typical water glass-based grout.

Separation of liquiritin, glycyrrhizic acid and glabridin from licorice by RP-HPLC (RP-HPLC를 이용한 감초에서 liquiritin, glycyrrhizic acid, glabridin의 분리)

  • Tian, Minglei;Yan, Hongyuan;Row, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • Reversed-phase high performance liquid chromatography (RP-HPLC) was used for the simultaneous determination of liquiritin (LQ), glycyrrhizic acid (GA) and glabridin from licorice. An optimized run condition was selected with a binary gradient elution of methanol-water which ramped 35/65 to 80/20 (vol. %) in 0.0-8.0 min and a flow rate of 1.0 mL/min. A good linearity was obtained between 0.2 mg/mL and 1.0 mg/mL for LQ and GA, and 0.01 mg/mL-0.2 mg/mL for glabridin with the relative standard deviations less than 0.90% (n=5). The developed method was successfully applied to determination of the three components from licorice samples. The mean recoveries of three components are 80.79% for liquiritin, 89.71% for glycyrrhizic acid and 72.50% for glabridin.

Analysis of tetracyclines in shrimp samples based on a two-step extraction approach prior to high-performance liquid chromatography

  • Thinnakorn Sukkhunthod;Thanakorn Pluangklang;Sumita Boonnab;Sira Sansuk;Phitchan Sricharoen;Maliwan Subsadsana
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.211-219
    • /
    • 2024
  • This study presents a sensitive and reliable method for determining tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) residues in shrimp samples. A two-step process involving liquid-liquid extraction (LLE) followed by solid-phase extraction (SPE) was developed prior to HPLC analysis. The target analytes were effectively extracted using EDTA/McIlvaine buffer (pH 4.0): methanol (80:20, %v/v), with subsequent clean-up using a C18 SPE cartridge. HPLC separation was conducted on a C18 column (250 mm × 4.6 mm i.d., 5 ㎛) at 30 ℃, using 0.01 % trifluoroacetic acid (A) and acetonitrile (B) as the mobile phase. A gradient elution protocol was applied, transitioning from 85(A):15(B) %v/v to 70(A):30(B) %v/v at 7 min, with a 5 min hold, followed by adjustment to 85(A):15(B) %v/v for 13-14 min. The detection was performed using photodiode array (PDA) at 365 nm with a flow rate of 1.0 mL/min. The calibration curves exhibited good linearity within a concentration range of 0.4-6.0 ㎍/mL (R2 > 0.995). The limits of detection (LOD) for TC, OTC, and CTC in shrimp were 0.034, 0.029, and 0.021 ㎍/mL, respectively. The limits of quantitation (LOQ) for TC, OTC, and CTC were found to be 0.114, 0.097, and 0.071 ㎍/mL, respectively. Recoveries of TC, OTC, and CTC from spiked shrimp samples ranged from 91.0 % to 95.5 %, 92.4 % to 97.2 %, and 93.3 % to 96.6 %, respectively. This method was successfully applied to the determination of TC, OTC, and CTC residues in shrimp samples sourced from various local markets.

Studies on the Separation and Preconcentration of Metal Ions by XAD-16-[4-(2-thiazolylazo)] orcinol Chelating Resin (XAD-16-[4-(2-thiazolylazo)]orcinol 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구)

  • Lee, Won;Seol, Kyung-Mi;An, Hye-Sook;Lee, Chang-Heon;Lim, Jae-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.282-290
    • /
    • 1997
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[4-(2-thiazolylazo)orcinol] (TAO) chelating resin were studied by elution method. The effect was examined with respect to overall capacity of each metal ion, separation of mixed metal ions, flow rate and concentration of buffer solution for optimum condition of sorption. The overall capacities of some metal ions on this chelating resin were 0.35nmol U(VI)/g resin, 0.49nmol Th(IV)/g resin, 0.41nmol Cu(II)/g resin, and 0.31nmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Mn(II)>Cd(II). The group separation of mixed metal ions was possible by increasing pH in pH range 2~5 at a flow rate of 0.28mL/min. Characteristics of desorption were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that 2M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV) ion. Also, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. Recovery of trace amount of U(VI) ion from artificial sea water was over 94%. The chelating resin, XAD-16-TAO was successfully applied to group separation of rare earth metal ions from U(VI) by using 2M $HNO_3$ as an eluent.

  • PDF

Analytical Validation of Rosmarinic Acid in Water Extract of Perilla frutescens Britton var. acuta Kudo as Functional Health Ingredient (건강기능식품 기능성 원료로써 장흥 차조기 열수 추출물의 지표성분인 로즈마린산 분석법 검증)

  • Park, Sung-Yong;Kim, Jung-Eun;Choi, Chul-Yung;Lee, Dong-Wook;Kim, Ki-Man;Yoon, Goo;Yoon, In-Su;Moon, Hong-Seop;Cho, Seung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.85-88
    • /
    • 2015
  • This study attempted to establish an HPLC analysis method for determination of marker compounds as a part of material standardization for the development of health functional food materials from Perilla frutescens Britton var. acuta Kudo. The quantitative determination method of rosmarinic acid as a marker compound of P. frutescens Britton var. acuta Kudo extract (PFE) was optimized by HPLC analysis using a C18 column ($4.6{\times}150mm$, $5{\mu}m$) with 0.1% acetic acid as the elution gradient and methanol as the mobile phase at a flow rate of 1 mL/min and detection wavelength of 280 nm. The HPLC/UV method was applied successfully to quantification of the marker compound in PFE after validation of the method with linearity, accuracy, and precision. The method showed high linearity in the calibration curve at a coefficient of correlation ($R^2$) of 0.9995, and the limit of detection and limit of quantitation were $0.36{\mu}g/mL$ and $1.2{\mu}g/mL$, respectively. Relative standard deviation (RSD) values of data from intra- and inter-day precision were less than 3.21% and 1.43%, respectively. Recovery rate test at rosmarinic acid concentrations of 12.5, 25 and $50{\mu}g/mL$ scored between 97.04~98.98% with RSD values from 0.25~1.97%. These results indicate that the established HPLC method is very useful for the determination of marker compound in PFE to develop a health functional material.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Development of Method for Analysis of Four Sulfonylurea Pesticides, Rimsulfuron, Ethametsulfuron-methyl, Tribenuron-methyl, Chlorimuron-ethyl Residues by High-Performance Liquid Chromatography with Diode-Array Detection (HPLC/DAD를 이용한 림술푸론, 에타메트설푸론메틸, 트리베누론메칠, 클로리무론에칠 4종 성분의 잔류농약 분석법 개발)

  • Koo, Yun-Chang;Yang, Sung-Yong;Wang, Zeng;An, Eun-Mi;Heo, Kyoung;Kim, Hyeng-Kook;Shin, Han-Seung;Lee, Jin-Won;Lee, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1231-1235
    • /
    • 2010
  • The method for residue analysis of four sulfonylurea pesticides, rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl and chlorimuron-ethyl was examined and analyzed by HPLC with ODS column ($250\;mm{\times}4.6\;mm$, $5\;{\mu}m$ diameter particle size) which was maintained at $35^{\circ}C$. Mobile phase consisted of solvent A (20 mM $KH_2PO_4$, pH 2.5) and solvent B (acetonitrile). Isocratic elution of the column with 45% solvent A and 55% solvent B at a flow rate of 1 mL/min resulted in retention times of 5.92, 6.54, 9.28, and 14.35 min for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. All injection volumes were $20\;{\mu}L$. The limit of quantitation was 0.02, 0.01, 0.001, and 0.004 mg/kg for rimsulfuron, ethametsulfuron-methyl, tribenuron-methyl, and chlorimuron-ethyl, respectively. Recovery rate test was performed with three farm products, rice, apple and soybean. Four sulfonylurea pesticides were spiked at concentrations of 0.05, 0.1 and 0.5 mg/kg. The recovery rates were ranged from 86.12% to 116.26% and the standard deviations of all experiments were within 10%.

Persistence and degradation of herbicide molinate in paddy-soil environment (논토양 환경 중 제초제 molinate의 잔류성과 분해특성)

  • Park, Byung-Jun;Park, Hyeon-Ju;Lee, Byung-Moo;Ihm, Yang-Bin;Choi, Ju-Hyeon;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.60-69
    • /
    • 2005
  • The herbicide molinate has been detected with high frequency in the main river during the growing season in Korea. To elucidate the exposure of molinate in agricultural environment, the persistence and the degradation characteristics of molinate were investigated in paddy ecosystems. The half-lives of molinate were 4.1 days with soil aquatic system, and 4.2 days in only aquatic system. Initial dissipation rate of molinate in water was greater with soil aquatic system than that of only aquatic system. Photolysis of molinate was occurred about 31.0% of molinate treated in pure water, when irradiated at 5,530 $J/cm^2$ by the xenon lamp, but its hydrolysis was stable. For the accelerated photolysis of molinate in aqueous solution, several photosensitizers were screened, showing that the hydroperoxide($H_2O_2$) and acetone were prominent among the chemical tested. When hydroperoxide and zinkoxide(ZnO) were used as photosensitizer, their photolysis were accelerated greater than 98% and 58% in aqueous solution, respectively. Elution rate of molinate as granular formulations in aqueous system was more than 90% in 30 hour at $35^{\circ}C$. Molinate concentration pattern in paddy water was rapidly decrease from treatment till 7 days in paddy rice field and its half-lives were 3.7 days($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402)).