Persistence and degradation of herbicide molinate in paddy-soil environment

논토양 환경 중 제초제 molinate의 잔류성과 분해특성

  • Park, Byung-Jun (National Institute of Agricultural Science & Technology, RDA) ;
  • Park, Hyeon-Ju (National Institute of Agricultural Science & Technology, RDA) ;
  • Lee, Byung-Moo (National Institute of Agricultural Science & Technology, RDA) ;
  • Ihm, Yang-Bin (National Institute of Agricultural Science & Technology, RDA) ;
  • Choi, Ju-Hyeon (National Institute of Agricultural Science & Technology, RDA) ;
  • Ryu, Gab-Hee (National Institute of Agricultural Science & Technology, RDA)
  • 박병준 (농업과학기술원 농산물안전성부) ;
  • 박현주 (농업과학기술원 농산물안전성부) ;
  • 이병무 (농업과학기술원 농산물안전성부) ;
  • 임양빈 (농업과학기술원 농산물안전성부) ;
  • 최주현 (농업과학기술원 농산물안전성부) ;
  • 류갑희 (농업과학기술원 농산물안전성부)
  • Published : 2005.03.31

Abstract

The herbicide molinate has been detected with high frequency in the main river during the growing season in Korea. To elucidate the exposure of molinate in agricultural environment, the persistence and the degradation characteristics of molinate were investigated in paddy ecosystems. The half-lives of molinate were 4.1 days with soil aquatic system, and 4.2 days in only aquatic system. Initial dissipation rate of molinate in water was greater with soil aquatic system than that of only aquatic system. Photolysis of molinate was occurred about 31.0% of molinate treated in pure water, when irradiated at 5,530 $J/cm^2$ by the xenon lamp, but its hydrolysis was stable. For the accelerated photolysis of molinate in aqueous solution, several photosensitizers were screened, showing that the hydroperoxide($H_2O_2$) and acetone were prominent among the chemical tested. When hydroperoxide and zinkoxide(ZnO) were used as photosensitizer, their photolysis were accelerated greater than 98% and 58% in aqueous solution, respectively. Elution rate of molinate as granular formulations in aqueous system was more than 90% in 30 hour at $35^{\circ}C$. Molinate concentration pattern in paddy water was rapidly decrease from treatment till 7 days in paddy rice field and its half-lives were 3.7 days($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402)).

농약사용 성수기에 하천수 중 검출빈도가 높은 수도용 제초제 molinate의 환경 노출성을 평가하기 위하여 논토양 조건에서 잔류성과 분해특성에 대한 시험을 수행하였다. Molinate의물 중 반감기는 토양이 존재하는 조건에서 4.1일이었고 토양이 없는 물만 처리한 구에서는 4.2일로 비슷하게 나타났으나, 초기 물중 소실율은 토양 처리구에서 훨씬 빨랐다. 물과 토양 중 경시적 잔류분포 변화는 처리 7일 후에 토양에 최고농도로 잔류되었다가 점차 감소되는 추세였다. 가수분해는 $25^{\circ}C$에서 pH 4.0, 7.2 및 9.0조건에서 모두 일어나지 않았으며, 물 중 광분해는 xenon lamp로 5,530 $J/cm^2$ 조사시 31.0%의 분해력을 보였으나, 순수물 보다 호소물에서 더 빠르게 분해되는 경향이었다. 광감제 첨가에 의한 molinate 광분해는 5,184 $J/cm^2$의 광조사시 과산화수소와 ZnO 첨가구에서 각각 98%와 58%의 분해력을 보여 이 물질들이 광감응효과가 뛰어난 것으로 확인되었다. Molinate 입제의 물 중 용출성은 $35^{\circ}C$에서 30시간에 90% 이상이 용출되었다. 논포장 벼 생육조건에서 논물 중 molinate 농도는 약제처리 7일까지 급격하게 감소하는 경향을 보였으며 논물 중 반감기는 3.7일($Y=1.9258{\times}e^{-0.1865X}$(r=-0.9402))이었다.

Keywords

References

  1. Charles J. Soderquist, James B. Bowers, and Donald G. Crosby (1977) Dissipation of molinate in a rice field. Agric. Food Chem. 25:940-945 https://doi.org/10.1021/jf60212a022
  2. Curry, K. K., B. D. Riggle, and R. E. Hoag (1989a) Ordram$^{\circledR}$ 8-E aquatic field dissipation study for aquatic use post flood. Report No. 228-073, Department of Pesticide Regulation, Sacramento, California, U.S.A
  3. Deuel, L. E., F. T. Turner, K. W. Brow, and J. D. Price (1978) Persistence and factors affecting dissipation of molinate under flooded rice culture. J. Environ. Qual. 7 :373-377 https://doi.org/10.2134/jeq1978.00472425000700030016x
  4. Draper, R. B., and D. G. Crosby (1987) Catalyzed Photodegradation of the herbicides molinate and thiobencarb. pp.240-249, In Photochemistry of environmental aquatic systems(ed W. J. Cooper), Univ. of Texas, Austin, U.S.A
  5. Draper, W. M., and D. G. Crosby (1981) Hydrogen peroxide and hydroxyl radical: Intermediates in indirect photolysis reaction in water. J. Agric. Food Chem. 29:699-702 https://doi.org/10.1021/jf00106a003
  6. Eya, B. K. (1989) Molinate aqueous photolysis at $25^{\circ}C$ Report No 228-069, Department of Pesticide Regulation, Sacramento, California, U.S.A
  7. Imai, Y. and S. Kuwatsuka (1982) Degradation of the herbicide molinate in soils. Journal of Pesticide Science 7: 487-497 https://doi.org/10.1584/jpestics.7.487
  8. Johnson, W. G., and T. L. Lavy (1995) Persistence of carbofuran and molinate in flooded rice culture. J. Environ. Qual. 24: 487-493 https://doi.org/10.2134/jeq1995.00472425002400030015x
  9. Kollman, W., and R. Segawa (1995) Interim report of the pesticide chemistry database. Report No. EH95-04, Environmental Hazards Assessment Program, Department of Pesticide Regulation, Sacramento, California, U.S.A
  10. Miki Sudo, Takao Kunimatsu, and Takuya Okubo (2002) Concentration and loading of pesticide residues in Lake Biwa basin. Water Research 36:315-329 https://doi.org/10.1016/S0043-1354(01)00196-8
  11. Rejto, M., S. Saltzman, and A. J. Acher (1984) Photodecomposition of propachlor, J. Agric. Food Chem. 32, 226-230 https://doi.org/10.1021/jf00122a013
  12. Ross, L. J., and R. J. Sava (1986) Fate of thiobencarb and molinate in rice fields. Journal of Environmental Quality 15(3): 220-224 https://doi.org/10.2134/jeq1986.00472425001500030003x
  13. Schwarzenbach, R, P., P. M. Gschwend, and D. M. Imboden (1993) Environmental Organic Chemistry, John Wiley & Sons Inc. press, USA
  14. Soderquist, C. J., J. B. Bowers, and D. G. Crosby (1977) Dissipation of molinate in a rice field. J. Agric. Food Chem. 25(4): 940-945 https://doi.org/10.1021/jf60212a022
  15. Tarr, J. B. (1990) Anaerobic aquatic metabolism of [ring-2-$^{14}C$] molinate. Report No.228-079, Department of Pesticide Regulation, Sacramento, California, USA
  16. Thomas, V. M., and C. L. Holt (1980) The degradation of[$^{14}C$] molinate in soil under flooded conditions. Journal of Environmental Science and Health B 15(5):475-484 https://doi.org/10.1080/03601238009372197
  17. Vidal, A., Z. Dinya, F. Mogyorodi Jr., F. Mogyorodi (1999) Photocatalytic degradation of thiocarbamate herbicide active ingredients in water. Applied Catalysis B: Enviromental 21: 259-267 https://doi.org/10.1016/S0926-3373(99)00019-3
  18. Yoshiyuki Hankawa (1985) Behavior of molinate in paddy and river water. 日本農藥學會誌 10: 107-112
  19. EPA, fate, transport and transformation test guidelines, OPPTS 835.2210. pp.1-34, In Direct photolysis rate in water by sunlight, EPA, USA
  20. EPA, fate, transport and transformation test guidelines, OPPTS 835.5270. pp.1-22, In Indirect photolysis screening test, EPA, U.S.A
  21. OECD (1981) OECD guidline for testing of chemicals. pp.1-23, In Hydrolysis as a function of pH. No. 111, OECD, Paris, France
  22. 金澤純 (1994) 農藥과の 環境科學. pp310-315 第 2刷. 合同出版, 日本
  23. 농약공업협회 (2001) 제초제 molinate의 잔류량 조사
  24. 박병준, 최주현, 이병무, 임건재, 김찬섭, 박경훈 (1998) 몇가지 수 중 환경요인에 의한 iprobenfos, isoprothiolane 및 diazinon의 분해속도. 농약과학회지 2(2):39-44
  25. 신진섭 (2002) Molinate의 수서생태계 위해성평가 연구. 서울대학교박사학위논문
  26. 전재철 (2000) Molinate에 의한 고추 약해 발생원인 조사. 농약공업협회
  27. 정영호, 박영선 (1990) 농약학. 전국농업기술협회