• Title/Summary/Keyword: elongation properties

Search Result 1,494, Processing Time 0.027 seconds

A Study on the Mechanical Properties of Spray-cast Al 6061 Alloy with Variation of Mg/Si Content (분사주조한 Al 6061 합금의 Mg/Si 첨가량의 변화에 따른 기계적 특성 고찰)

  • Lee, Jae-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.179-183
    • /
    • 2008
  • Mechanical properties of the spray-cast Al 6061 alloy with variation of Mg/Si addition were investigated. After spray-cast, hot extrusion was performed at $460^{\circ}C$ then followed ageing treatment to the T6 condition. SEM, EDX, and XRD were used to characterize a ${\beta}(Mg_{2}Si)$ precipitate. The amount of ${\beta}$ precipitate was calculated from the XRD measurements. Hardness, ultimate tensile strength and elongation were tested then compared with those of the Al 6061 alloys made by ingot metallurgy (I/M) and powder metallurgy (P/M). The ultimate tensile strength and elongation of the spray-cast Al 6061 alloy were 318MPa and 16.5%, respectively. These properties were improved in the 2.2 wt%Mg and 1.3wt%Si addition up to 349MPa of UTS and 12.5% of elongation, mainly due to increased amount of a fine supersaturated ${\beta}(Mg_{2}Si)$ precipitate.

Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites

  • Choi, Sung-Seen;Ko, Eunah
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.196-204
    • /
    • 2015
  • Crosslink density of a rubber vulcanizate determines the chemical and physical properties, while bound rubber is an important factor to estimate reinforcement of a filled rubber compound. Extender oil is added to a raw rubber with very high molecular weight for improving processability of a rubber composite. Influence of extender oil on crosslink density, bound rubber formation, and physical properties of solution styrene-butadiene rubber (SSBR) composites with differing microstructures was investigated. Crosslink densities of non-oil-extended SSBR (NO-SSBR) vulcanizates were higher than those of oil-extended SSBR (OE-SSBR) ones. Bound rubber contents of NO-SSBR compounds were also greater than those of OE-SSBR ones. The experimental results could be explained by interfering of extender oil. The OE-SSBR vulcanizates had low modulus but long elongation at break, whereas the NO-SSBR ones had high modulus but short elongation at break. It was found that the crosslink densities affected the physical properties more than the bound rubber contents. The moduli increased with increase in the crosslink density irrespective of extender oil, while the elongation at break decreased. Each variation of the tensile strengths of NO-SSBR and OE-SSBR vulcanizates with the crosslink density showed a decreasing trend. Tear strength of the OE-SSBR vulcanizate increased with increase in the crosslink density, whereas variation of the tear strength of NO-SSBR vulcanizate with the crosslink density showed a weak decreasing trend.

Effects of P Addition and Homogenizing Heat Treatment on the Mechanical Properties of Centrifugal Cast Cu-Sn-Ni-P Alloy (원심주조한 Cu-Sn-Ni-Pb계 합금의 기계적 성질에 미치는 P첨가와 균질화 처리의 영향)

  • Kwon, Young-Hwan;Jea, Chang-Wooing;Yoon, Jae-Hong;Kang, Chang-Yong;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • The purpose of this study is to investigate the effect of P addition and homogenizing heat treatment on the mechanical properties of Cu-Sn-Ni alloy. The addition of P was 0.025wt.%P to 0.085wt.%P and homogenizing heat-treated at 400, 500, $600^{\circ}C$ under $N_2$ gas atmosphere. Mechanical properties was investigated in this study were Rockwell hardness, tensile strength, and elongation. Tensile strength and elongation increased with P and homogenizing time. Temperature was significantly influence on mechanical properties. Hardness decreased with increasing homogenizing time and temperature, but 0.085wt.%P specimen was showed higher hardness and lower tensile strength and elongation than 0.073wt.%P specimen due to the presence of more $Cu_3P$ in matrix.

  • PDF

The Change of the Cyclic Aging Characteristics under Salt-fog/Heating on Silicone Rubber by ATH Additions (ATH 첨가에 의한 실리콘 고무의 염무/열 반복열화 특성 변화)

  • Lee, Chung;Kim, Ki-Yup;Kim, Gyu-Baek;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.58-63
    • /
    • 2005
  • In this research, silicone rubber with additions of inorganic filler, alumina trihydrate$(Al(OH)_3\;:\;ATH)$, was aged acceleratedly and cyclically by the salt-fog and heating. The optimum amount of ATH addition to silicone rubber have been investigated by measurements of leakage current in the change of electrical properties and tensile strength, %elongation in mechanical properties and FT-IR, TG, SEM in the change of the chemical properties. With regard to un-aged silicone rubber, as the ATH addition amount increases, conductive path formation time was shortened in the electrical properties and tensile strength was increased, %elongation was decreased. In case of identical ATH addition amount, as cyclic aging increases, surface resistivity, tensile strength and %elongation were decreased. Considering the cyclic aging, the most effective amount of ATH addition was about 90phr.

Study on the Physical Properties of New Developed Teat Cup Liner Compounds (신개발 유두컵 라이너용 고무조성물의 물리적 특성 조사)

  • Lee, Jeong-Chi
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • The teat cup liner compounds with improved physical property were developed using tri-polymer blend of natural rubber(NR), ethylene propylene diene monomer rubber(EPDM) and butyl rubber, and the changes of the physical properties of compounds were measured under various conditions such as standard, thermal, alkaline detergent and acid solutions aging conditions. The hardness of the new teat cup liner compound 1 was 50 and that of the compound 2 was 51 under standard condition. The tensile strength and elongation of the new compound 1 were $154kgf/cm^2$ and 675% under the standard condition, respectively. Also, those of the new compound 2 were 180 kgf/cm and 634% under the same condition. Their hardness were increased about $2{\sim}6%$ and the tensile strength and elongation were decreased about 10% under the $25^{\circ}C$ water and detergent solutions. Even though the new teat cup liner compounds exhibited so much decreased tensile properties under the $105^{\circ}C$ thermal aged condition, they sustained more stable aged physical properties including tensile strength and elongation than those of imported teat cup liner materials. Consequently, the new teat cup liner compounds would give prolonged lift cycle if they are used as a teat cup liner product.

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Molecular Dynamics Simulation Study for Transport Properties of Diatomic Liquids

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1697-1704
    • /
    • 2007
  • We present results for transport properties of diatomic fluids by isothermal-isobaric (NpT) equilibrium molecular dynamics (EMD) simulations using Green-Kubo and Einstein formulas. As the molecular elongation of diatomic molecules increases from the spherical monatomic molecule, the diffusion coefficient increases, indicating that longish shape molecules diffuse more than spherical molecules, and the rotational diffusion coefficients are almost the same in the statistical error since random rotation decreases. The calculated translational viscosity decreases with the molecular elongation of diatomic molecule within statistical error bar, while the rotational viscosity increases. The total thermal conductivity decreases as the molecular elongation increases. This result of thermal conductivity for diatomic molecules by EMD simulations is again inconsistent with the earlier results of those by non-equilibrium molecular dynamics (NEMD) simulations even though the missing terms related to rotational degree of freedom into the Green-Kubo and Einstein formulas with regard to the calculation of thermal conductivity for molecular fluids are included.

Comparison Study of Physical Properties between Two Silicone Gel Sheets (새로 개발한 실리콘젤시트의 물성에 대한 연구)

  • Yun, Young Mook;Kang, Nak Heon;Kim, Tae Joon
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.659-662
    • /
    • 2008
  • Purpose: Silicone gel sheet(SGS) is used for preventing and treating keloid or hypertrophic scars. Because the product is weak in tear strength and adherence, it requires several replacements, which requires high cost. As a solution for this problem, we developed a new silicone gel sheet, named as Scar Clinic, and confirmed its physical properties. Methods: Tensile strength, elongation rate, adhesiveness, and water vapor transmission rate were experimentally compared between the most commonly used SGS product and the Scar Clinic. Results: The newly developed SGS showed better results compared to the existed SGS in regards to tensile strength, elongation rate, adhesiveness, and water vapor transmission rate. Conclusion: The Scar Clinic showed higher durability and flexibility. It will be a useful product for treating scars clinically.

A Study on the Promotion. of Mechanical Properties for 200 Grade Maraging Steel (200 Grade 마르에이징강의 기계적성질 향상을 위한 연구)

  • 장경천;국중민;이동길;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.60-66
    • /
    • 2004
  • Hardness value decreased about 3% for annealed specimens and increased about 60% for one hour aged specimens. But the values of the other specimens aged two hours or more showed almost the same. The yield strength was the highest about 1,800㎫ in 0.06%Nb specimen having twice as much as the base meta1 specimen. Also, the elongation was the highest in 0.03%Nb specimen showing the same as base metal specimen. The higher aging temperature and the longer aging time, the higher fatigue life. On the other hand, the 0.03%Nb specimen showed the highest fatigue life which increased about 12% more than base metal specime. 0.06%Nb specimen aged at 482$^{\circ}C$ for 8 hours simultaneously satisfied the 250 grade strength and 200 grade elongation having the most superior mechanical properties.

  • PDF

Evaluation of Physical Properties of Polyurethane Resin for Wound Covering according to PTMG, DMBA Application (PTMG, DMBA 적용에 따른 창상피복 폴리우레탄 수지의 물리적 특성 평가)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1248-1256
    • /
    • 2020
  • In this study, the polyurethane resin was synthesized by applying PTMG and DMBA of different composition ratios for the synthesis of water-dispersible polyurethane used in wound coating resin. The varying properties of the synthesized water-dispersible polyurethane were measured through tensile strength, elongation, and abrasion resistance analysis. As for the tensile strength measurement result according to the PTMG content, the sample with the highest reaction molar ratio was measured as 1.08 kgf/mm2 and the elongation was measured as 520%. As for the tensile strength result according to the DMBA content, the sample with the highest reaction molar ratio was measured as 0.51 kgf/mm2, and the elongation was measured as 435%. The degree of surface destruction by the abrasion resistance measurement was visually confirmed through SEM.