The purpose of this study is to investigate how the mathematical creativity of middle school mathematical gifted students is represented through the process of problem posing activities. For this goal, they were asked to pose real-world problems similar to the tasks which had been solved together in advance. This study demonstrated that just 2 of 15 pupils showed mathematical giftedness as well as mathematical creativity. And selecting mathematically creative and gifted pupils through creative problem-solving test consisting of problem solving tasks should be conducted very carefully to prevent missing excellent candidates. A couple of pupils who have been exerting their efforts in getting private tutoring seemed not overcoming algorithmic fixation and showed negative attitude in finding new problems and divergent approaches or solutions, though they showed excellence in solving typical mathematics problems. Thus, we conclude that it is necessary to incorporate problem posing tasks as well as multiple solution tasks into both screening process of gifted pupils and mathematics gifted classes for effective assessing and fostering mathematical creativity.
The Purpose of this study was to explore the methods of generalization and errors pattern generated by mathematically gifted students and non-gifted students in elementary school. In this research, 6 problems corresponding to the x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns were given to 156 students. Conclusions obtained through this study are as follows. First, both group were the best in symbolically generalizing ax pattern, whereas the number of students who generalized $a^x$ pattern symbolically was the least. Second, mathematically gifted students in elementary school were able to algebraically generalize more than 79% of in x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns. However, non-gifted students succeeded in algebraically generalizing more than 79% only in x+a, ax patterns. Third, students in both groups failed in finding commonness in phased numbers, so they solved problems arithmetically depending on to what extent it was increased when they failed in reaching generalization of formula. Fourth, as for the type of error that students make mistake, technical error was the highest with 10.9% among mathematically gifted students in elementary school, also technical error was the highest as 17.1% among non-gifted students. Fifth, as for the frequency of error against the types of all patterns, mathematically gifted students in elementary school marked 17.3% and non-gifted students were 31.2%, which means that a majority of mathematically gifted students in elementary school are able to do symbolic generalization to a certain degree, but many non-gifted students did not comprehend questions on patterns and failed in symbolic generalization.
Journal of Elementary Mathematics Education in Korea
/
v.19
no.4
/
pp.589-608
/
2015
The inquiry subject of this paper is the number of convex polygons one can form by attaching the seven pieces of a tangram. This was identified by two mathematical proofs. One is by using Pick's Theorem and the other is 和々草's method, but they are difficult for elementary students because they are part of the middle school curriculum. This paper suggests new methods, by using unit area and the minimum area which can be applied at the elementary level. Development of programs for the mathematically gifted elementary students can be composed of 4 class times to see if they can prove it by using new methods. Five mathematically gifted 5th grade students, who belonged to the gifted class in an elementary school participated in this program. The research results showed that the students can justify the number of convex polygons by attaching edgewise seven pieces of tangrams.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.2
/
pp.437-461
/
2011
The purpose of this study was to examine the metacognition of mathematically gifted students in the problem-solving process of the given task in a bid to give some significant suggestions on the improvement of their problem-solving skills. The given task was to count the number of regular squares at the n${\times}$n geoboard. The subjects in this study were three mathematically gifted elementary students who were respectively selected from three leading gifted education institutions in our country: a community gifted class, a gifted education institution attached to the Office of Education and a university-affiliated science gifted education institution. The students who were selected from the first, second and third institutions were hereinafter called student C, student B and student A respectively. While they received three-hour instruction, a participant observation was made by this researcher, and the instruction was videotaped. The participant observation record, videotape and their worksheets were analyzed, and they were interviewed after the instruction to make a qualitative case study. The findings of the study were as follows: First, the students made use of different generalization strategies when they solved the given problem. Second, there were specific metacognitive elements in each stage of their problem-solving process. Third, there was a mutually influential interaction among every area of metacognition in the problem-solving process. Fourth, which metacognitive components impacted on their success or failure of problem solving was ascertained.
Journal of The Korean Association For Science Education
/
v.26
no.3
/
pp.307-316
/
2006
The purpose of this study was to analyze intellectual characteristics of elementary students in science-gifted education. For this, 72 science-gifted students were selected. Multiple intelligences, creativity, and the science process skills of these students were tested. To compare these traits with those of general students, 78 general students were also tested. The results of this study indicated that science-gifted students significantly surpassed general students in the areas of logical-mathematics, intra-person, and naturalist. Especially, the intelligences of logical-mathematics and intra-person were strong point of the science-gifted students. But music intelligence among the 8 intelligence was weak point. Creativity and the science process skills of the students in science-gifted education excelled those of general students. Therefore, to enhance the efficiency of the science-gifted education program in elementary school, it is necessary to consider the intellectual characteristics of the students.
Journal of Elementary Mathematics Education in Korea
/
v.22
no.3
/
pp.309-330
/
2018
The purpose of this study is to identify possibility of a mathematical problem posing ability by presenting problem posing tasks with different degrees of structure according to the study of Stoyanova and Ellerton(1996). Also, the results of this study suggest the direction of gifted elementary mathematics education to increase mathematical creativity. The research results showed that mathematical problem posing ability is likely to be a factor in identification of gifted students, and suggested directions for problem posing activities in education for mathematically gifted by investigating the characteristics of original problems. Although there are many criteria that distinguish between gifted and ordinary students, it is most desirable to utilize the measurement of fluency through the well-structured problem posing tasks in terms of efficiency, which is consistent with the findings of Jo Seokhee et al. (2007). It is possible to obtain fairly good reliability and validity in the measurement of fluency. On the other hand, the fact that the problem with depth of solving steps of 3 or more is likely to be a unique problem suggests that students should be encouraged to create multi-steps problems when teaching creative problem posing activities for the gifted. This implies that using multi-steps problems is an alternative method to identify gifted elementary students.
In this study, an 'Independent Study Checklist' for gifted mathematics students was developed and applied. The characteristics shown in the results after the 'Independent Study Checklist' was applied to mathematics gifted students were analysed. The checklist was divided into six phases of the independent study process and included checking contents at each stage. Observations, student interviews and results of the process of 'Independent Study' were collected and analysed to understand the characteristics of students' outcomes. The results from the application of the 'Independent Study Checklist' suggest the followings. First, the 'Independent Study Checklist' took the role of a self-check list to identify the process of the 'Independent Study'. Second, the check points of the 'Independent Study Checklist' presented the view of discussion to gifted students. Third, the 'Independent Study Checklist' was used as teaching material for teachers of gifted students. Fourth, 'Independent Study Checklist' was optionally used according student's study topics and method. Fifth, the checklist at each phase was continuously used during the whole process of 'Independent Study'. The teachers' interest and encouragement took the role of facilitating students' study process.
By learning math, constructing math problems helps us to improve analytical thinking ability and have a positive attitude and competency towards math leaning. Especially, gifted students should create math problems under certain circumstances beyond the level of solving given math problems. In this study, I examined the math problems made by the gifted students after the process of raising questions and discussing them for themselves by doing origami. I intended to get suggestions by analyzing of problem posing strategy and method facilitating the thinking of mathematics gifted students in an origami program.
For this case study of gifted education, two classrooms in two locations, show life in general of the gifted educational system. And for this case study the identity of teachers and the gifted, help to activate the mathematically gifted education for these research questions, which are as followed: Firstly, how is the gifted education classroom life? Secondly, what kind of identity do the teachers and gifted students bring to mathematics, mathematics teaching and mathematics learning? Being selected in the gifted children's education center solves the research problem of characteristic and approach. Backed by the condition and the permission possibility, 2 selected classes and 2 people, which are coming and going. Gifted education classroom life, the identity of teachers and gifted students in mathematics and mathematics teaching and mathematic learning. It will be for 3 months, with various recordings and vocal instruction between teacher and students. Collected observations and interviews will be analyzed over the course of instruction. The results analyzed include, social participation, structure, and the formation of the gifted education classroom life. The organization of classes were analyzed by the classes conscious levels to collect and retain data. The classes verification levels depended on the program's first class incentive, teaching and learning levels and understanding of gifted math. A performance assessment will be applied after the final lesson and a consultation with parents and students after the final class. The six kinds of social participation structure come out of the type of the most important roles in gifted education accounts, for these types of group discussions and interactions, students must have an interaction or individual activity that students can use, such as a work product through the real materials, which release teachers and other students for that type of questions to evaluate. In order for the development of meaningful mathematical concepts to formulate, mathematical principles require problem solving among all students, which will appear in the resolution or it will be impossible to map the meaning of the instruction from which it was formed. These results show the analysis of the mathematics, mathematics teaching, mathematics learning and about the identity of the teachers and gifted. Gifted education teachers are defined by gifted math, which is more difficult and requires more differentiated learning, suitable for gifted students. Gifted was defined when higher level math was created and challenged students to deeper thinking. Gifted students think that gifted math is creative learning and they are forward or passive to one-way according to the education atmosphere.
The purpose of this study was to develop a test of a creative problem solving (CPS) for the selection of gifted science students in elementary school. For this, the methods and procedures of the selection of gifted science students was investigated through the internet homepages 23 gifted science education centers of universities and 16 city. province offices of education. The results of this study were as follows: Most of the gifted science students were selected through a multi-step examination process. They were selected on the basis of their records by recommendation of a principal or a classroom teacher in their school, by operation of standardized tests (ex. intelligence quotient score, achievements in science and mathematics, interest and attitude/aptitude for science as well as through other means), as well as through intensive observation of those gifted science students who are selected by interview and oral tests. The selection of gifted students was not evaluated through creativity testing; giftedness in city. province office of education. Testing of CPS was found to be especially lacking in these organizations. For the development of the test items of CPS in science, the five elements were extracted through the framework for the content analysis of the CPS: problem exploration, problem statement, solution thinking, experiment design, and assesment. In addition, suggestions were made regarding an appropriate scoring system for the test of the CPS. As the result of the developed test was applied to the 4th grade of the gifted and general student, we found that gifted students were superior to general students. In conclusion, it was that the CPS test developed in this study should be used to evaluate the CPS for the selection of gifted students.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.