• Title/Summary/Keyword: elemental impurities

Search Result 16, Processing Time 0.023 seconds

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Nonmagnetic Impurity Effect in $CuF_{2}.2H_{2}O$ ($CuF_{2}.2H_{2}O$에서의 비자성 불순물 효과)

  • Chang Hoon Lee;Cheol Eui Lee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.119-122
    • /
    • 1995
  • We have measured the magnetic susceptibilities of a CuF/sub 2/ .center dot. 2H/sub 2/O sample by means of the SQUID(superconducting quantum interference device) at the magnetic fields of 0.5 T and 1 mT, in the temperature range 5-300 K. The sample was found to contain some nonmagnetic calcium and magnesium impurities by the elemental analysis. Our measurements differ from known results for pure Cu F/sub 2/ .center dot. 2H/sub 2/O and are well explained by the effect of the nonmagnetic impurities in our sample. The purity of our sample derived from the temperature dependence of the susceptibilities was compared with that from the elemental analysis.

  • PDF

Tandem laser-induced breakdown spectroscopy laser-ablation inductively-coupled plasma mass spectrometry analysis of high-purity alumina powder

  • Lee, Yonghoon;Kim, Hyang
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.121-130
    • /
    • 2019
  • Alumina is one of the most important ceramic materials because of its useful physical and chemical properties. Recently, high-purity alumina has been used in various industrial fields. This leads to increasing demand for reliable elemental analysis of impurities in alumina samples. However, the chemical inertness of alumina makes the sample preparation for conventional elemental analysis a tremendously difficult task. Herein, we demonstrated the feasibility of laser ablation for effective sampling of alumina powder. Laser ablation performs sampling rapidly without any chemical reagents and also allows simultaneous optical emission spectroscopy and mass spectrometry analyses. For six alumina samples including certified reference materials and commercial products, laser-induced breakdown spectroscopy (LIBS) and laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) analyses were performed simultaneously based on a common laser ablation sampling. LIBS was found to be useful to quantify alkali and alkaline earth metals with limits-of-detection (LODs) around 1 ppm. LA-ICP-MS could quantify transition metals such as Ti, Cu, Zn, and Zr with LODs in the range from a few tens to hundreds ppb.

Conservation of Bronze Artifacts from Kimhae Yangdong-ri Site (김해 양동리 출토 유물 보존처리)

  • Eun, Yu-Jae;Kang, Hyung-Tae
    • 보존과학연구
    • /
    • s.16
    • /
    • pp.18-40
    • /
    • 1995
  • Twelve bronze artifacts and silver earring from Kimhae Yangdong-ri Site were treated by B.T.A(Benzotriazole) for the stabilization of copper alloys and impregnated with Incralac for consolidation. Bronze artifacts were analyzed qualitatively by X-rayfluorescence. It was found that elemental composition of bronze artifacts were Cu-Sn-Pbsystem wint some impurities such as Bi, As, Fem Sb, and Ag.

  • PDF

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

Studies on the Adsorptive Properties of Korean Kaolin(I) Physico-chemical Properties of Korean Kaolin (국산카올린의 흡착성에 관한 연구(I) 국산카올린의 물성)

  • 이계주;정필조
    • YAKHAK HOEJI
    • /
    • v.29 no.2
    • /
    • pp.96-102
    • /
    • 1985
  • Innovated utilization of Korean kaolins as pharmaceuticals is attempted, for which relevant properties including adsorptive behaviours are observed in connection with their mineralogical structures. In practice, physico-chemical properties are assessed by means of IR, XRD and thermal analysis including DTA, TG and DSC. Elemental analysis of the ore specimens under investigation is carried out in conventional manners. It is found that the chemical compositions are varied significantly with sampling sites and primary classifications. The clay ores thus analyzed are mainly composed of halloysite species. Proper benefication of the raw clays is necessary so that authentic requirements for medicinal use may be satisfied. White-colored premium grade halloysite could be utilized as therapeutics with relative ease after purification. Evidence indicates that gibbsite-like impurities are intercalated between the 1 : 1 layered moieties. Thermal behaviours may be characterized in such a fashion that loss of free water occurs near 100.deg. C and further heatings result in liberation of bound water near 500.deg. C, with subsequent transformation into amorphous metastable entities. Through thermal activation, enhanced pharmaceutical effects could be envisaged.

  • PDF

Characterization of Humic Acids from Kuye San Soil

  • Hichung Moon;Me Hae Lee;Tae Hyun Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.153-156
    • /
    • 1991
  • Three humic acids, two from uranium bearing coal shale and one from the neighbouring limey shale region, are extracted from soils by dissolution in 0.1 M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental composition, contents of inorganic impurities, molecular size distribution and proton exchange capacities. The results are compared with the data of reference and aquatic humic acids characterized under the project MIRAGE Ⅱ at TUM and also with other literature data. The proton exchange capacity determined by direct titration, is found to be 3.60 and 2.01 meq/g for coal shale and limey shale humic acids, respectively.

The Study of Hydrometallurgical Process for Recovery of Zinc from Electric Arc Furnace Dust (습식산화법을 이용한 제강분진 내 아연회수에 관한 연구)

  • Moon, Dea-Hyun;Jeung, Jae-Hoon;Chang, Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.331-336
    • /
    • 2016
  • In this study the optimum conditions for recovery of valuable metal in Electric Arc Furnace Dusts were investigated. 2M of $H_2SO_4$, 1~5 of solid/liquid ratio, 0~180 min of leaching time has been established for leaching condition, and for electrowinning, each of Pt, C, Zn, Pb anode and Zn, Cu cathode was compared respectively at pH 2, 4 and 6. The result of elemental analysis of Zn crystal, a lagre quantity of Fe and H has been observed with Zn and other heavy metal, therefore, impurities removing process would be requir for enhancing purity of Zn. As the result, about 60% of Zn has been recovered under condition of 2 M of $H_2SO_4$, 1:2 of S/L ratio at 120 min, and Pt or Pb for anode, Zn for cathode has been shown the highest efficiency of electrowinning at pH 6.

High Cadmium Levels in Cured Meat Products Marketed in Nigeria - Implications for Public Health

  • Adejumo, Olufunmilayo E;Fasinu, Pius S;Odion, Judith E;Silva, Boladale O;Fajemirokun, Timothy O
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1933-1936
    • /
    • 2016
  • Heavy metals are known to disrupt important physiological processes in living cells, and have been responsible for various pathological conditions with possible contributions to cancer development. Food contamination have been identified as one of the ways humans are exposed to heavy metals. In developing countries like Nigeria, the regulatory framework for enforcing compliance with globally acceptable exposure to deleterious contaminants is poor. In the current study, thirteen samples of cured meat products of diverse origin marketed in South-west Nigeria were evaluated for lead, cadmium, chromium and nickel contents using the atomic absorption spectroscopy technique. All the samples analysed contained cadmium between 0.35 and 1.20 ppm, levels considered higher than acceptable limits in consumable products. Lead, chromium and nickel were not detected in any of the samples. As known cumulative poisons, there is the need for stringent regulatory control of these heavy metals in cured meat products imported into or produced indigenously in the country in order to minimize the risks to public health.

The Effect of pH on Synthesis of Nano-Silica Using Water Glass (물유리를 이용한 나노실리카 제조 시 pH가 미치는 영향)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.209-213
    • /
    • 2015
  • Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICP-OES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature.