Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.3.123

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries  

Abd El-Rahman, H.A. (Chemistry Department, Faculty of Science, Cairo University)
Gad-Allah, A.G. (Chemistry Department, Faculty of Science, Cairo University)
Salih, S.A. (Chemistry Department, Faculty of Science, Cairo University)
Abd El-Wahab, A.M. (Chemistry Department, Faculty of Science, Cairo University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.3, 2012 , pp. 123-134 More about this Journal
Abstract
The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.
Keywords
Positive pole; Pb-Ca-Sn alloys; Lead-acid batteries; recycled Lead;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Stevenson, M., Recycling|Lead-Acid Batteries: overview, in Encyclopedia of Electrochemical Power Sources, J. Garche, ed., Elsevier (2009).
2 S. Prolich and D. Sewig, J. Power Sources, 57, 27 (1995).   DOI   ScienceOn
3 T. W. Ellis and A. H. Mirza, J. Power Sources, 195, 4525 (2010).   DOI   ScienceOn
4 D. Pavlov, Lead-Acid Batteries, Science and Technology, Ch. 1, Elsevier (2011).
5 D. A. Rand, P. T. Moseley, J. Garche and C. D. Parker, Eds., Valve-Regulated Lead-Acid Batteries, Ch. 2, Elsevier (2004).
6 R. D. Perngaman, J. Power Sources, 33, 13 (1991).   DOI   ScienceOn
7 W. R. Osorio, L. C. Peixoto and A. Garcia, J. Power Sources, 195, 1726 (2010).   DOI   ScienceOn
8 C. S. Lakshmi, J. E. Manders and D. M. Rice, J. Power Sources, 73, 23 (1998).   DOI   ScienceOn
9 G. Bourguignon, A. Maitre E. Rocca, J. Steinmetz and L. Torcheux, J. Power Sources, 113, 301 (2003).   DOI   ScienceOn
10 E. Rocca and J. Steinmetz, Electrochim. Acta, 44, 4611 (1999).   DOI   ScienceOn
11 V. F. Bashev, N. E. Zhitnik, V. A. Ivanov, D. A.Rybalka and Yu. A. Tkackenko, Metalloy, 1, 85 (2011).
12 E. Rocca , G. Bourguignon and J. Steinmetz, J. Power Sources, 161, 666 (2006).   DOI   ScienceOn
13 H. Li, W.X. Guo, H. Y. Chen, D. E. Finlow, H. W. Zhou, C. L. Dou, G. M. Xiao, S. G. Peng and W. W. Wei, H. Wang, J. Power Sources, 191, 111 (2009).   DOI   ScienceOn
14 W. Zhang, A. Li, H. Chen, B. Lan, K. Pan, T. Zhang, M. Fang, S. Liu and W. Zhang, J. power Sources, 203, 145 (2012).   DOI   ScienceOn
15 W. Wang, B. Zhou, G. S. Rohrer , H. Guo and Z. Cai, Material Science and Engineering: A, 527, 3695 (2010).   DOI   ScienceOn
16 F. A. Perez-Gonzalez, C. G. Camurri, C.A. Carrasco and R. Colas, Materials Characterization, 64, 62 (2012).   DOI   ScienceOn
17 H. Li, W. X. Guo, H. Y. Chen, D. E. Finlow, H. W. Zhou, C. L. Dou, G. M. Xiao, S. G. Peng, W. W. Wei and H. Wang, J. Power Sources, 191, 111 (2009).   DOI   ScienceOn
18 M. M. Burashnikova, I. A. Kazarinov and I. V. Zotova, J. Power Sources, 207, 19 (2012).   DOI   ScienceOn
19 J. R. MacDonald, J. Electroanal.Chem., 223, 25 (1987).   DOI   ScienceOn
20 S. Brinic, M. Metikos-Hukovic and R. Babic, J. Power Sources, 5, 19 (1995).
21 H. A. Abd El-Rahman, S. A. Salih and A. M. Abd El- Wahab, Mat. -wiss u. werkstofftech., 42, 784 (2011).   DOI   ScienceOn
22 M. Metikos-Hukovic, R. Babic and S. Brinic, J. Power Sources, 157, 563 (2006).   DOI   ScienceOn
23 P. Simon, N. Bui, N. Pebere, F. Dabosi and L. Albert, J. Power Sources, 55, 63 (1995).   DOI   ScienceOn
24 D. G. Li, G. S. Zhou, J. Zhang and M. S. Zheng, Electrochim. Acta, 52, 2146 (2007).   DOI   ScienceOn
25 A. G. Gad-Allah, H. A. Abd El-Rahman and M. abd El- Galil, J. Power Sources, 62. 51 (1996).   DOI   ScienceOn
26 A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. abd El-Galil, J. Appl. Electrochem., 22, 571 (1992).   DOI
27 A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd Ed., Ch 10, Wiley (2001).
28 A. Czerwinski, M. Zelazowska, M. Grden, K. Kuc, J. D. Milewski, A. Nowacki, G. Wojcik and M. Kopczyk, J. Power Sources, 85, 49 (2000).   DOI   ScienceOn
29 A. G. Gad-Allah, H. A. Abd El-Rahman, S. A. Salih and M. abd El-Galil, J. Appl. Electrochem., 25, 682 (1995).
30 H. A. Abd El-Rahman, S. A. Salih and A. M. Abd El- Wahab, J. Electrochem. Scienec and Technology., 2, 76 (2011).   DOI   ScienceOn
31 V. Lliev and D. Pavlov, J. Electrochem. Soc., 129, 1393 (1982).   DOI
32 J. S. Symanski, B. K. Mahato and K. R. Bullock, J. Electrochem. Soc., 135, 548 (1988).   DOI