• Title/Summary/Keyword: elemental analysis

Search Result 1,138, Processing Time 0.021 seconds

Structural determination of triterpenic acids in Prunellae Spica by fast atom bombardment tandem mass spectrometry (하고초의 생리활성 성분 Triterpenic Acids의 FAB-MS를 이용한 구조 규명)

  • Ahn, Young Min;Lee, Kang Ro;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 2008
  • Five triterpenic acids as marker compounds were extracted and isolated from Prunellae Spica by column chromatography and reversed-phase high-performance liquid chromatography (HPLC), and their purity was determinated by HPLC (purity ${\geq}90%$). Molecular weight and elemental compositions of the five marker compounds were determined by fast atom bombardment high-resolution mass spectrometry (FAB-HRMS). The structural determination of the five marker compounds was carried out fast atom bombardment collision-induced dissociation tandem mass spectrometry (FAB-CID-MS/MS). The collision-induced dissociation (CID) of protonated molecules $[M+H]^+$ and deprotonated molecules $[M-H]^-$ produced diverse product ions due mainly to retro Diels-Alder reaction (RDA), dehydration and decarboxylation. Moreover, the CID-MS/MS spectra of the $[M-H]^-$ ions were observed charge-remote fragmentation (CRF) patterns. On the basis of interpretation of CID-MS/MS spectra, structural elucidation of triterpenic acids isolated from Prunellae Spica was clearly performed.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Study on the Elemental Diffusion Distance of a Pure Nickel Layer Additively Manufactured on 316H Stainless Steel (316H 스테인리스 강 위에 적층 제조된 순수 니켈층의 원소 확산거리 연구)

  • UiJun Ko;Won Chan Lee;Gi Seung Shin;Ji-Hyun Yoon;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2024
  • Molten salt reactors represent a promising advancement in nuclear technology due to their potential for enhanced safety, higher efficiency, and reduced nuclear waste. However, the development of structural materials that can survive under severe corrosion environments is crucial. In the present work, pure Ni was deposited on the surface of 316H stainless steel using a directed energy deposition (DED) process. This study aimed to fabricate pure Ni alloy layers on an STS316H alloy substrate. It was observed that low laser power during the deposition of pure Ni on the STS316H substrate could induce stacking defects such as surface irregularities and internal voids, which were confirmed through photographic and SEM analyses. Additionally, the diffusion of Fe and Cr elements from the STS316H substrate into the Ni layers was observed to decrease with increasing Ni deposition height. Analysis of the composition of Cr and Fe components within the Ni deposition structures allows for the prediction of properties such as the corrosion resistance of Ni.

A close look at the influence of praseodymium (III) oxide on the structural, physical, and γ-ray protection capacity of a ternary B2O3-PbO-CdO glass system

  • R.H. Shoeir;M. Afifi;Abdelghaffar S. Dhmees;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2258-2265
    • /
    • 2024
  • The present investigation aims to study the role of Pr2O3 on the structural, physical, and radiation shielding properties of a dense cadmium lead borate glass. The XRD was used to affirm the glassy amorphous structure of fabricated sample materials. Moreover, the FTIR was used to record the change in the FT-IR spectra due to the addition of Pr2O3 in the wavenumber interval between 400 and 4000 cm-1. The features of glass surfaces and the elemental analyses for the synthesized Pr2O3-reinforced cadmium lead borate glasses were performed using a SEM, supported by an energy-dispersive spectrometer. The γ-ray protection capacity was evaluated using the Monte Carlo method in a wide energy interval ranging between 0.015 and 15 MeV. The linear attenuation coefficient (LAC) at 1 MeV was reduced by a factor of 10 % from 0.372 cm-1 to 0.340 cm-1. The decrease in the LAC values negatively affected the other shielding properties such as half-value thickness and the transmission factor. Although the linear attenuation coefficient is decreased slightly with the partial substitution of CdO by Pr2O3 compound, the fabricated glass samples still have a high shielding capacity compared to the traditional commercial glasses as well as previous similar reported glasses.

Scientific analysis of the glass from Hwangnam-daech'ong Tomb No. 98 (황남대총(皇南大塚) 98호분 출토 유리(琉璃)의 과학적(科學的) 분석(分析))

  • Jo, Kyung-mi;Yu, Hei-sun;Kang, Hyung-tae
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.61-74
    • /
    • 1999
  • Elemental analysis of 40 glass samples from the Northern Tomb and the Southern Tomb of Hwangnam-daech'ong No. 98 was performed. Fourteen compositions of each sample were analyzed quantitatively by SEM-EDS and glass samples were classified by multivariate analysis such as PCA. All of 40 samples were confirmed to be Na2O-CaO-SiO2 system with about 20% of Na2O. Samples were classified into two groups by doing PCA on concentrations of 5 major elements(SiO2, Al2O3, Na2O, CaO and K2O). Samples included in group I showed the concentration of Al2O3 is about 9.7% and that of CaO, about 2.2%. In group II, concentration of Al2O3 is about 3.2% and that of CaO, about 4.9%. Especially yellow grains embedded in sample No. 12 were shown to be PbSnO3 by micro XRD, which was the first coloring material ever found in Korea. Lead isotope ratios of samples No. 12 and No. 17 which contained lead were measured by TIMS. The origin of lead was traced by means of multivariate analysis such as SLDA. The result showed that lead from southern China and southern Korea had been used for making glass.

Cobalt(II) Complex of 1,2-Bis(2,2'-bipyridyl-6-yl)ethane. Crystallization Process and Structural Analysis of Two Shapes of Crystals (1,2-비스(2,2'-디피리딜-6일)에탄의 코발트 착물. 두 가지 형태의 결정화 과정 및 구조 분석적 접근)

  • Park, Sung-Ho;Yoo, Kyung-Ho;Jung, Ok-Sang
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.421-427
    • /
    • 1999
  • Two shapes of crystals have been isolated by the interdiffusion of $Co(NCS)_2$ dissolved in methanol with 1,2-bis(2,2'-bipyridyl-6-yl)ethane (bbpe) dissolved in chloroform. The two crystals have been elucidated as $trans-Co^{II}(NCS)_2(bbpe)$ and $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$, by X-ray crystallography, elemental analysis, IR, and thermal analysis. The two molecular structures are very similar except for the absence or presence of chloroform solvate molecules. The bbpe ligand coordinates to the cobalt(II) ion in an open-ended tetradentate mode, resulting in discrete mononuclear cobalt(II) complex. The cobalt atom adopts a typical octahedral arrangement with six nitrogen donating atoms with two NCS groups in trans positions. A significant solid-to-solid phase transition occurs presumably due to the change of conformationally flexible bbpe ligand. The formation of both crystals oeeurs in a successive two-step process, the formation of $trans-Co^{II}(NCS)_2(bbpe)$ and its transformation into $trans-Co^{II}(NCS)_2(bbpe){\cdot}2CHCl_3$. The thermal stability and favorable formation of the solvate crystals may be ascribed to the interaction between S atom of NCS group and Cl of chloroform.

  • PDF

Evaluation of Organic Compounds and Heavy Metals in Sediments from the Urban Streams in the Busan City (부산시 도심하천 퇴적물의 유기물 및 중금속 오염도 평가)

  • Lee, Junki;Kim, Seogku;Song, Jaehong;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • The main purpose of this study is to offer informations about the current conditions and basic data of sediments for the urban streams in the Busan city. Total 14 urban streams were selected and sediment samples were collected. Then, It was investigated the sediment qualities though the measurement of pH, proximate analysis, elemental analysis, COD, organic carbon content, volatile solid content and heavy metal concentration. Results show that COD, organic carbon content, volatile solid content and heavy metal concentration of sediment are determined in the range of $1.20{\sim}75.07mg\;L^{-1}$, 0.19~11.54%, 0.23~34.21% and $0.4{\sim}732.6mg\;kg^{-1}$, respectively. Finally, Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with USEPA sediment quality standards, total 9 samples were evaluated as heavily polluted and total 3 samples were evaluated as moderately polluted. But, when compared with ontario sediment quality guidelines, total 3 samples were evaluated as Severe effect level and total 10 samples were evaluated as lowest effect level.

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

Scientific Analysis of Bronze Materials of Sanoisa Temple in Chongju(I) (청주(淸州) 사뇌사지(思惱寺地) 청동기(靑銅器)의 과학(科學) 분석(分析)(I))

  • Kang, H.T.;Yu, H.S.;Moon, S.Y.;Kwon, H.N.
    • Conservation Science in Museum
    • /
    • v.2
    • /
    • pp.57-68
    • /
    • 2000
  • This study is a scientific analysis of 12 bronze materials which were excavated from Sanoisa temple in Chongju. Analysis of crystalline shape, size and distribution of the each sample metal suggested that they can be classified as tableware(wrought), vessels for memorial service(casting) and bell bronze, which is the same result as classification based on elemental composition. Most of the tableware are forging wares with composition of 8:2:0 in Cu:Sn:Pb, and vessels for memorial service are casting wares whose composition is 7:1:2 in Cu:Sn:Pb, and bell bronze's composition is Cu:Sn:Pb = 85:10:5/9:1:0. The result clearly shows that composition is closely related with usage and manufacturing method of wares. Trace elements such as Co, Fe and As are the elements with high correlation coefficient with Cu, which means they exist as impurities in Cu, and the content of As showed an increase in the order of tableware, memorial service vessels and bell bronze. In addition, the analysis of lead isotope ratio showed that 3 bronze materials with high lead content were made from the lead coming from Japan and China. The composition of the solder was Cu:Sn:Pb = 83:12:5 where small Pb crystals were distributed evenly.