DOI QR코드

DOI QR Code

A close look at the influence of praseodymium (III) oxide on the structural, physical, and γ-ray protection capacity of a ternary B2O3-PbO-CdO glass system

  • R.H. Shoeir (Nuclear Materials Authority) ;
  • M. Afifi (Ultrasonic Laboratory, National Institute of Standards (NIS)) ;
  • Abdelghaffar S. Dhmees (Department of Analysis and Evaluation, Egyptian Petroleum Research Institute) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • K.A. Mahmoud (Nuclear Materials Authority)
  • Received : 2023.11.01
  • Accepted : 2024.01.23
  • Published : 2024.06.25

Abstract

The present investigation aims to study the role of Pr2O3 on the structural, physical, and radiation shielding properties of a dense cadmium lead borate glass. The XRD was used to affirm the glassy amorphous structure of fabricated sample materials. Moreover, the FTIR was used to record the change in the FT-IR spectra due to the addition of Pr2O3 in the wavenumber interval between 400 and 4000 cm-1. The features of glass surfaces and the elemental analyses for the synthesized Pr2O3-reinforced cadmium lead borate glasses were performed using a SEM, supported by an energy-dispersive spectrometer. The γ-ray protection capacity was evaluated using the Monte Carlo method in a wide energy interval ranging between 0.015 and 15 MeV. The linear attenuation coefficient (LAC) at 1 MeV was reduced by a factor of 10 % from 0.372 cm-1 to 0.340 cm-1. The decrease in the LAC values negatively affected the other shielding properties such as half-value thickness and the transmission factor. Although the linear attenuation coefficient is decreased slightly with the partial substitution of CdO by Pr2O3 compound, the fabricated glass samples still have a high shielding capacity compared to the traditional commercial glasses as well as previous similar reported glasses.

Keywords

References

  1. A. Araz, E. Kavaz, R. Durak, Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: an experimental study, Radiat. Phys. Chem. 182 (2021) 109382, https://doi.org/10.1016/j.radphyschem.2021.109382. 
  2. M. Dong, S. Zhou, X. Xue, X. Feng, M.I. Sayyed, M.U. Khandaker, D.A. Bradley, The potential use of boron containing resources for protection against nuclear radiation, Radiat. Phys. Chem. 188 (2021) 109601, https://doi.org/10.1016/j.radphyschem.2021.109601. 
  3. B. Aygun, High alloyed new stainless steel shielding material for gamma and fast neutron radiation, Nucl. Eng. Technol. 52 (2020) 647-653, https://doi.org/10.1016/j.net.2019.08.017. 
  4. A.S. Abouhaswa, E. Kavaz, Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3Na2O-ZnO CaO glass system, J. Non-Cryst. Solids 535 (2020) 119993, https://doi.org/10.1016/j.jnoncrysol.2020.119993. 
  5. M. Dong, X. Xue, H. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244, https://doi.org/10.1016/j.radphyschem.2017.07.023. 
  6. H.S. Gokce, B.C. Ozturk, N.F. Cam, O. Andic-Cakir, Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture, Cem. Concr. Compos. 92 (2018) 56-69, https://doi.org/10.1016/j.cemconcomp.2018.05.015. 
  7. S. Yasmin, B.S. Barua, M.U. Khandaker, F.-U.-Z. Chowdhury, MdA. Rashid, D. A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings, Results Phys. 9 (2018) 541-549, https://doi.org/10.1016/j.rinp.2018.02.075. 
  8. S. Yasmin, Z. Rozaila, M. Khandaker, B. Barua, F. Chowdhury, M. Rashid, D. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings, Radiat. Eff. Defect Solid 173 (2018) 657-672, https://doi.org/10.1080/10420150.2018.1493481. 
  9. M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, J. Hazard Mater. 318 (2016) 751-757, https://doi.org/10.1016/j.jhazmat.2016.06.012. 
  10. M. Tuyan, H.S. Gokce, Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays, Construct. Build. Mater. 189 (2018) 470-477, https://doi.org/10.1016/j.conbuildmat.2018.09.022. 
  11. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, M.A. Imheidat, F. Alshahri, M. Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples, Optik 239 (2021) 166790, https://doi.org/10.1016/j.ijleo.2021.166790. 
  12. M.I. Sayyed, A.H. Almuqrin, A. Kumar, J.F.M. Jecong, I. Akkurt, Optical, mechanical properties of TeO2-CdO-PbO-B2O3 glass systems and radiation shielding investigation using EPICS2017 library, Optik 242 (2021) 167342, https://doi.org/10.1016/j.ijleo.2021.167342. 
  13. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H. J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application, Radiat. Phys. Chem. 160 (2019) 41-47, https://doi.org/10.1016/j.radphyschem.2019.03.018. 
  14. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Development of BaO-ZnO-B2O3 glasses as a radiation shielding material, Radiat. Phys. Chem. 137 (2017) 72-77, https://doi.org/10.1016/j.radphyschem.2016.03.015. 
  15. A.H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2-WO3-Bi2O3 and TeO2-WO3-PbO glasses, Appl. Phys. Mater. Sci. Process 127 (2021), https://doi.org/10.1007/s00339-021-04344-9. 
  16. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, B.M. Raffah, R. Almalki, R. Rajaramakrishna, An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide, Appl. Phys. A 125 (2019) 749, https://doi.org/10.1007/s00339-019-3053-3. 
  17. E.K. Abdel-Khalek, E.A. Mohamed, S.M. Salem, I. Kashif, Structural and dielectric properties of (100 - x) B2O3-(x/2)Bi2O3-(x/2)Fe2O3 glasses and glass-ceramic containing BiFeO3 phase, J. Non-Cryst. Solids 492 (2018) 41-49, https://doi.org/10.1016/j.jnoncrysol.2018.04.020. 
  18. R.N.A. Prasad, B. Venkata Siva, K. Neeraja, N. Krishna Mohan, J.I. Rojas, Influence of modifier oxides on spectroscopic features of Nd2O3 doped PbO-Ro2O3-WO3-B2O3 glasses (with Ro2O3 = Sb2O3, Al2O3, and Bi2O3), J. Lumin. 223 (2020) 117171, https://doi.org/10.1016/j.jlumin.2020.117171. 
  19. M. Rajesh, E. Kavaz, D.P.R. B, Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications, Mater. Res. Bull. 142 (2021) 111383, https://doi.org/10.1016/j.materresbull.2021.111383. 
  20. B. Alaylar, B. Aygun, K. Turhan, G. Karadayi, E. S, akar, V.P. Singh, M.I. Sayyed, E. Pelit, A. Karabulut, M. Gulluce, Z. Turgut, M. Isaoglu, Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential, Radiat. Phys. Chem. 184 (2021) 109471, https://doi.org/10.1016/j.radphyschem.2021.109471. 
  21. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, N. Dwaikat, Y.S. M. Alajerami, M. Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur Phys J Plus 136 (2021), https://doi.org/10.1140/epjp/s13360-020-01011-5. 
  22. M.I. Sayyed, K.A. Mahmoud, O.L. Tashlykov, M.U. Khandaker, M.R.I. Faruque, Enhancement of the shielding capability of soda-lime glasses with Sb2O3 dopant: a potential material for radiation safety in nuclear installations, Appl. Sci. 11 (2021) 326, https://doi.org/10.3390/app11010326. 
  23. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, La-Ur-03-1987. II, 2003, Version 5. 
  24. A.H. Almuqrin, M. Hanfi, K.G. Mahmoud, M.I. Sayyed, H. Al-Ghamdi, D. A. Aloraini, The role of La2O3 in enhancement the radiation shielding efficiency of the tellurite glasses: monte-carlo simulation and theoretical study, Materials 14 (2021) 3913, https://doi.org/10.3390/ma14143913. 
  25. M.I. Sayyed, K.A. Mahmoud, Simulation of the impact of Bi2O3 on the performance of gamma-ray protection for lithium zinc silicate glasses, Optik 257 (2022) 168861, https://doi.org/10.1016/j.ijleo.2022.168861. 
  26. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics, J. Phys. Chem. Solid. 164 (2022) 110627, https://doi.org/10.1016/j.jpcs.2022.110627. 
  27. E. Hannachi, M.I. Sayyed, A.H. Almuqrin, K.G. Mahmoud, Study of the structure and radiation-protective properties of yttrium barium copper oxide ceramic doped with different oxides, J. Alloys Compd. 885 (2021) 161142, https://doi.org/10.1016/j.jallcom.2021.161142. 
  28. K.A. Mahmoud, M.W. Marashdeh, Clay-based bricks' rich illite mineral for gamma-ray shielding applications: an experimental evaluation of the effect of pressure rates on gamma-ray attenuation parameters, Open Chem. 21 (2023), https://doi.org/10.1515/chem-2023-0167. 
  29. A.A. Abdelrehiem, T.M.A. Razek, M.A. Rabbah, LEAD recovery from crystal glass solid wastes, J. Environ. Sci. (China) 48 (2019) 1-18, https://doi.org/10.21608/jes.2019.145120. 
  30. S. Rada, M. Culea, M. Neumann, E. Culea, Structural role of europium ions in lead-borate glasses inferred from spectroscopic and DFT studies, Chem. Phys. Lett. 460 (2008) 196-199, https://doi.org/10.1016/j.cplett.2008.05.088. 
  31. S. Rada, E. Culea, M. Bosca, M. Culea, R. Muntean, P. Pascuta, Spectroscopic and quantum mechanical investigation of the boro-bismuthate glasses and glass ceramics structures, Vib. Spectrosc. 48 (2008) 285-288, https://doi.org/10.1016/j.vibspec.2008.04.001. 
  32. S.M. Abo-Naf, F.H. el Batal, M.A. Azooz, Characterization of some glasses in the system SiO2, Na2O.RO by infrared spectroscopy, Mater. Chem. Phys. 77 (2003) 846-852, https://doi.org/10.1016/S0254-0584(02)00215-8. 
  33. S. Rada, E. Culea, V. Rus, Spectroscopic and quantum chemical investigation of the 4Bi2O3.B2O3 glass structure, J. Mater. Sci. 43 (2008) 6094-6098, https://doi.org/10.1007/s10853-008-2949-7. 
  34. S. Rada, M. Culea, E. Culea, Structure of TeO2.B2O3 glasses inferred from infrared spectroscopy and DFT calculations, J. Non-Cryst. Solids 354 (2008) 5491-5495, https://doi.org/10.1016/j.jnoncrysol.2008.09.009. 
  35. M.V. Sasi kumar, B. Rajeswara Reddy, S. Babu, A. Balakrishna, Y.C. Ratnakaram, Thermal, structural and spectroscopic properties of Pr3+ ion doped in lead-zinc borate glasses modified by alkali metal ions, J. Taibah Univ. Sci. 11 (2017) 593-604, https://doi.org/10.1016/j.jtusci.2016.04.004. 
  36. S. Ispas, M. Benoit, P. Jund, R. Jullien, Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations, Phys. Rev. B 64 (2001) 214206, https://doi.org/10.1103/PhysRevB.64.214206. 
  37. N.F. Mott, E.A. Davies, Electronic Processes in Non-crystalline Materials, Clarendon Press, Oxford, 1979. 
  38. A. Wagh, Y. Raviprakash, V. Upadhyaya, S.D. Kamath, Composition dependent structural and optical properties of PbF2-TeO2-B2O3-Eu2O3 glasses, Spectrochim. Acta Mol. Biomol. Spectrosc. 151 (2015) 696-706, https://doi.org/10.1016/j.saa.2015.07.016. 
  39. Y.S.M. Alajerami, D.A. Drabold, M.H.A. Mhareb, K.L.A. Cimatu, G. Chen, K. M. Abushab, Investigation of gamma-radiation shielding properties of cadmium bismuth borate glass experimentally and by using XCOM program and MCNP5 code, Phys. Status Solidi 258 (2021) 2000417, https://doi.org/10.1002/pssb.202000417. 
  40. E.E. Saleh, M.A. Algradee, S.A. El-Fiki, G.M. Youssef, Fabrication of novel lithium lead bismuth borate glasses for nuclear radiation shielding, Radiat. Phys. Chem. 193 (2022) 109939, https://doi.org/10.1016/j.radphyschem.2021.109939. 
  41. A.G. Schott, Radiation Shielding Glasses, Hattenbergstrasse 10 55122 Mainz Germany, 2013. www.schott.com/advanced_optics.