• Title/Summary/Keyword: element detection

Search Result 648, Processing Time 0.028 seconds

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Nondestructive Defect Detection in Two-dimensional Anisotropic Composite Elastic Bodies Using the Boundary Element Method (경계 요소법을 이용한 2차원 비등방성 복합재료 탄성체의 비파괴 결함 추정)

  • 이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • In this paper, the defects of two-dimensional anisotropic elastic bodies are identified by using the boundary element method. The use of numerical models that contain only boundary integral terns reduces the dimensionality of the problem by one. This advantage is particularly important in problems such as crack mechanics. Avoiding domain meshing is also particularly advantageous in the solution of inverse problems since it overcomes mesh perturbations and simplifies the procedure. In this paper, nondestructive approaches for the existing isotropic materials are extended to analyze the elastic bodies made of anisotropic materials such as composites. After verifying that the proposing boundary element model is in good agreement with numerical results reported by other investigators, the effect of noise in the measurements on the identifiability is studied with respect to different design parameters of layered composites. Sample studies are carried out for various layup configurations and loading conditions. The effects of the layup sequences in detecting flaw of composites is explored in this paper.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

Edge Detection using Morphological Amoebas Noisy Images (잡음영상에서 아메바를 이용한 형태학적 에지검출)

  • Lee, Won-Yeol;Kim, Se-Yun;Kim, Young-Woo;Lim, Jae-Young;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.569-584
    • /
    • 2009
  • Edge detection in images has been widely used in image processing system and computer vision. Morphological edge detection has used structuring elements with fixed shapes. This paper presents morphological operators with non-fixed shape kernels, or amoebas, which take into account the image contour variations to adapt their shape. Experimental results are analyzed in both qualitative analysis through visual inspection and quantitative analysis with PFOM and ROC curves. The Experiments demonstrate that these novel operators outperform classical morphological operations with a fixed, space-invariant structuring elements for edge detection applications.

Graphene Based Electrochemical DNA Biosensor for Detection of False Smut of Rice (Ustilaginoidea virens)

  • Rana, Kritika;Mittal, Jagjiwan;Narang, Jagriti;Mishra, Annu;Pudake, Ramesh Namdeo
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.291-298
    • /
    • 2021
  • False smut caused by Ustilaginoidea virens is an important rice fungal disease that significantly decreases its production. In the recent past, conventional methods have been developed for its detection that is time-consuming and need high-cost equipments. The research and development in nanotechnology have made it possible to assemble efficient recognition interfaces in biosensors. In this study, we present a simple, sensitive, and selective oxidized graphene-based geno-biosensor for the detection of rice false smut. The biosensor has been developed using a probe DNA as a biological recognition element on paper electrodes, and oxidized graphene to enhance the limit of detection and sensitivity of the sensor. Probe single-stranded DNA (ssDNA) and target ssDNA hybridization on the interface surface has been quantitatively measured with the electrochemical analysis tools namely, cyclic voltammetry, and linear sweep voltammetry. To confirm the selectivity of the device, probe hybridization with non-complementary ssDNA target has been studied. In our study, the developed sensor was able to detect up to 10 fM of target ssDNA. The paper electrodes were employed to produce an effective and cost-effective platform for the immobilization of the DNA and can be extended to design low-cost biosensors for the detection of the other plant pathogens.

Fault Detections of Ring Structures using Vibration Modes (진동모드를 이용한 링 구조물의 결함 탐지)

  • Kim, Seock-Hyun;Jang, Ho-Sik
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.29-36
    • /
    • 2002
  • A damage detection algorithm using vibration modes is applied to the ring structures and the modal behaviors of the slightly asymmetric rings are examined. Mode shape change, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are investigated to identify the locations of faults or damages The above fault detection parameters are calculated and compared by the finite element analysis on rings with designed local damages. Damages are modeled as a reduced stiffness in the analysis The results show that MSER and MCR can be proper parameters to detect local damages in the ring structures.

  • PDF

Instantaneous Voltage Sag Corrector Using Series Compensator in Transfer Power Line Generator (송전선 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Min, Wan-Ki;Jeon, Byeong-Seok;Lee, Dae-Jong;Hong, Hyun-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • This paper describes the novel control techniques design of VSC(Voltage Sag Corrector) for the purpose of power line quality enhancement. A fast detecting technique of voltage sag is implemented through the detection of instantaneous value on synchronous rotating do-reference frame. The first order digital filter is added in the detection algorithm to protect the insensitive characteristics against the noise. The relationship between the total detection time and cut-off frequency of the filter is described. The size of the capacitor bank used as the energy storage element is designed from the point of view of input/output energy with circuit analysis. Finally, the validity of the proposed scheme is proven through the simulated results.

Expansion of Measured Static and Dynamic Data as Basic Information for Damage Detection

  • Eun, Hee-Chang;Lee, Min-Su;Chung, Chang-Yong;Kwak, No-Hyun
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2008
  • The number of measured degrees of freedom for detecting the damage of any structures is usually less than the number of model degrees of freedom. It is necessary to expand the measured data to full set of model degrees of freedom for updating modal data. This study presents the expansion methods to estimate all static displacements and dynamic modal data of finite element model from the measured data. The static and dynamic methods are derived by minimizing the variation of the potential energy and the Gauss's function, respectively. The applications illustrate the validity of the proposed methods. It is observed that the numerical results obtained by the static approach correspond with the Guyan condensation method and the derived static and dynamic approaches provide the fundamental idea for damage detection.

Damage detection and localization on a benchmark cable-stayed bridge

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1113-1126
    • /
    • 2015
  • A damage localization algorithm based on Operational Deformed Shapes and known as Interpolation Damage Detection Method, is herein applied to the finite element model of a cable stayed bridge for detecting and localizing damages in the stays and the supporting steel beams under the bridge deck. Frequency Response Functions have been calculated basing on the responses of the bridge model to low intensity seismic excitations and used to recover the Operational Deformed Shapes both in the transversal and in the vertical direction. The analyses have been carried in the undamaged configuration and repeated in several different damaged configurations. Results show that the method is able to detect the damage and its correct location, provided an accurate estimation of the Operational Deformed Shapes is available. Furthermore, the damage detection algorithm results effective also when damages coexist at the same time at several location of the cable-stayed bridge members.

Structural Damage Detection Using Swarm Intelligence and Model Updating Technique (군집지능과 모델개선기법을 이용한 구조물의 결함탐지)

  • Choi, Jong-Hun;Koh, Bong-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.