DOI QR코드

DOI QR Code

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M. (Department of Industrial Engineering, University of Padova) ;
  • Galvanetto, U. (Department of Industrial Engineering, University of Padova) ;
  • Surace, C. (Department of Structural, Geotechnical and Building Engineering)
  • Received : 2013.01.30
  • Accepted : 2013.10.19
  • Published : 2014.10.25

Abstract

Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

Keywords

Acknowledgement

Supported by : Ministry of Education, University and Research (MIUR)

References

  1. Battipede, M., Ruotolo, R. and Surace, C. (2001), "Damage detection of plate-like structures", Key Eng. Mater., 204, 27-34.
  2. Bayly, P.V., Johnson, E.E., Wolf, P.D., Smith,W. and Ideker, R. (1995), "Predicting patterns of epicardial potentials during ventricular fibrillation", IEEE T. Bio-Med. Eng., 42(9), 898-907. https://doi.org/10.1109/10.412656
  3. Bentahar, M., El Guerjouma, R., Idijmarene, S. and Scalerandi, M. (2013), "Influence of noise on the threshold for detection of elastic nonlinearity", J. Appl. Phys., 113(4), 043516-043516-043511. https://doi.org/10.1063/1.4789800
  4. Cao, M. and Qiao, P. (2009), "Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification", Mech. Syst. Signal Pr., 23(4), 1223-1242. https://doi.org/10.1016/j.ymssp.2008.10.001
  5. Cavalini Jr, A., Franco, V., Gonsalez, C., Lopes Jr., V. and De Melo, G. (2008), "Noise influence on damage detection through modal state observers methodology", Tema Tend Mater.Appl. Comput., 9(2), 195-204.
  6. Cusumano, J., Sharkady, M. and Kimble, B. (1994), "Experimental measurements of dimensionality and spatial coherence in the dynamics of a flexible-beam impact oscillator", P. T. Roy. Soc. London. Series A: Phys. Eng. Sci., 347(1683), 421-438.
  7. De Stefano, M., Gherlone, M., Mattone, M., Di Sciuva, M. and Worden, K. (2011), "Optimum sensor placement for impact location on multilayered composite structures using neural networks", Proceedings of the16th International Conference on Composite Structures ICCS 16.
  8. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  9. Feeny, B. and Kappagantu, R. (1998), "On the physical interpretation of proper orthogonal modes in vibrations", J. Sound Vib., 211(4), 607-616. https://doi.org/10.1006/jsvi.1997.1386
  10. Feeny, B. and Liang, Y. (2003), "Interpreting proper orthogonal modes of randomly excited vibration systems", J. Sound Vib., 265(5), 953-966. https://doi.org/10.1016/S0022-460X(02)01265-8
  11. Fitzsimons, P.M. and Rui, C. (1993), "Determining low dimensional models of distributed systems", Adv. Robust Nonlinear Control Syst., 9-15.
  12. Galvanetto, U., Monopoli, L., Surace, C. and Tassotti, A. (2007), "Experimental application of a damage localisation technique based on smoothed proper orthogonal modes", Key Eng. Mater., 347, 121-126. https://doi.org/10.4028/www.scientific.net/KEM.347.121
  13. Galvanetto, U., Surace, C. and Tassotti, A. (2008), "Structural damage detection based on proper orthogonal decomposition: experimental verification", AIAA J.,46(7), 1624-1630. https://doi.org/10.2514/1.30191
  14. Galvanetto, U. and Violaris, G. (2007), "Numerical investigation of a new damage detection method based on proper orthogonal decomposition", Mech. Syst. Signal Pr., 21(3), 1346-1361. https://doi.org/10.1016/j.ymssp.2005.12.007
  15. Ghajari, M., Sharif-Khodaei, Z., Aliabadi, M. and Apicella, A. (2013), "Identification of impact force for smart composite stiffened panels", Smart Mater. Struct., 22(8), 085014. https://doi.org/10.1088/0964-1726/22/8/085014
  16. Ghajari, M., Sharif-Khodaei, Z. and Aliabadi, M. (2012), "Impact detection using artificial neural networks", Key Eng. Mater., 488, 767-770.
  17. Gherlone, M., Mattone, M., Surace, C., Tassotti, A. and Tessler, A. (2005), "Novel vibration-based methods for detecting delamination damage in composite plate and shell laminates", Key Eng. Mater., 293, 289-296.
  18. Giurgiutiu, V. (2008), Structural health monitoring with piezoelectric wafer active sensors, Academic Press.
  19. Graham, M.D. and Kevrekidis, I.G. (1996), "Alternative approaches to the Karhunen-Loeve decomposition for model reduction and data analysis", Comput. Chem. Eng., 20(5): 495-506. https://doi.org/10.1016/0098-1354(95)00040-2
  20. Hamey, C.S., Lestari, W., Qiao, P. and Song, G. (2004), "Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes", Struct. Health Monit., 3(4), 333-353. https://doi.org/10.1177/1475921704047502
  21. Hensman, J., Gherlone, M., Surace, C. and Di Sciuva, M. (2010), Probabilistic proper orthogonal decomposition, EWSHM.
  22. Hensman, J., Surace, C. and Gherlone, M. (2011), "Detecting mode-shape discontinuities without differentiation-examining a Gaussian process approach", J. Physics: Conference Series, IOP Publishing.
  23. Holmes, P., Lumley, J.L. and Berkooz, G. (1998), Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press.
  24. Kerschen, G., Golinval, J., Vakakis, A.F. and Bergman, L.A. (2005), "The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview", Nonlinear Dynam., 41(1), 147-169. https://doi.org/10.1007/s11071-005-2803-2
  25. Kerschen, G. and Golinval, J.C. (2002), "Physical interpretation of the proper orthogonal modes using the singular value decomposition", J. Sound Vib., 249(5), 849-865. https://doi.org/10.1006/jsvi.2001.3930
  26. Limongelli, M. (2010), "Frequency response function interpolation for damage detection under changing environment", Mech. Systems Signal Pr., 24(8), 2898-2913. https://doi.org/10.1016/j.ymssp.2010.03.004
  27. Limongelli, M. (2011), "The interpolation damage detection method for frames under seismic excitation", J. Sound Vib., 330(22), 5474-5489. https://doi.org/10.1016/j.jsv.2011.06.012
  28. Matworks (2012). Matlab 2012 documentation.
  29. Qiao, P., Lu, K., Lestari, W. and Wang, J. (2007), "Curvature mode shape-based damage detection in composite laminated plates", Compos. Struct., 80(3), 409-428. https://doi.org/10.1016/j.compstruct.2006.05.026
  30. Radzienski, M., Krawczuk, M. and Palacz, M. (2011), "Improvement of damage detection methods based on experimental modal parameters", Mech. Syst. Signal Pr., 25(6), 2169-2190. https://doi.org/10.1016/j.ymssp.2011.01.007
  31. Rao, S.S. and Yap, F.F. (1995), Mechanical vibrations, Addison-Wesley Reading, MA.
  32. Ratcliffe, C.P. (1997), "Damage detection using a modified Laplacian operator on mode shape data", J. Sound Vib., 204(3), 505-517. https://doi.org/10.1006/jsvi.1997.0961
  33. Ratcliffe, C.P. (2000), "A frequency and curvature based experimental method for locating damage in structures", J. Vib. Acoust., 122(3), 324-329. https://doi.org/10.1115/1.1303121
  34. Ratcliffe, C.P. and Bagaria, W.J. (1998), "Vibration technique for locating delamination in a composite beam", AIAA J., 36(6), 1074-1077. https://doi.org/10.2514/2.482
  35. Shane, C. and Jha, R. (2011), "Proper orthogonal decomposition based algorithm for detecting damage location and severity in composite beams", Mech. Syst. Signal Pr., 25(3), 1062-1072. https://doi.org/10.1016/j.ymssp.2010.08.015
  36. Sharif-Khodaei, Z., Ghajari, M. and Aliabadi, M. (2012), "Determination of impact location on composite stiffened panels", Smart Mater. Struct., 21(10), 105026. https://doi.org/10.1088/0964-1726/21/10/105026
  37. Thiene, M., Galvanetto, U., Gherlone, M. and Aliabadi, M.H. (2014), "Application of Laplacian operators on noisy data to compute curvature with proper orthogonal decomposition", Key Eng. Mater., 577-578, 241-244.
  38. Thiene, M., Zaccariotto, M. and Galvanetto, U. (2013), "Application of proper orthogonal decomposition to damage detection in homogeneous plates and composite beams", J. Eng. Mech.-ASCE, 139(11), 1539-1550. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000603
  39. Worden, K. and Staszewski, W. (2000), "Impact location and quantification on a composite panel using neural networks and a genetic algorithm", Strain, 36(2), 61-68. https://doi.org/10.1111/j.1475-1305.2000.tb01175.x
  40. Wu, D. and Law, S. (2004), "Damage localization in plate structures from uniform load surface curvature", J. Sound Vib., 276(1), 227-244. https://doi.org/10.1016/j.jsv.2003.07.040
  41. Xiang, J., Matsumoto, T., Wang, Y. and Jiang, Z. (2012), "Detect damages in conical shells using curvature mode shape and wavelet finite element method", Int. J. Mech. Sci., 66, 83-93.
  42. Yoon, M., Heider, D., Gillespie, J., Ratcliffe, C. and Crane, R. (2005), "Local damage detection using the two-dimensional gapped smoothing method", J. Sound Vib., 279(1), 119-139. https://doi.org/10.1016/j.jsv.2003.10.058
  43. Zapico, J., Gonzalez, M. and Worden, K. (2003), "Damage assessment using neural networks", Mech. Syst. Signal Pr., 17(1), 119-125. https://doi.org/10.1006/mssp.2002.1547
  44. Zhang, Y., Lie, S.T. and Xiang, Z. (2012), "Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle", Mech. Syst. Signal Pr., 35(1-2), 238-254.

Cited by

  1. Impact location in composite plates using proper orthogonal decomposition vol.64, 2015, https://doi.org/10.1016/j.mechrescom.2014.12.003
  2. Optimal sensor placement for maximum area coverage (MAC) for damage localization in composite structures vol.25, pp.9, 2016, https://doi.org/10.1088/0964-1726/25/9/095037
  3. Damage localisation in delaminated composite plates using a Gaussian process approach vol.50, pp.10, 2015, https://doi.org/10.1007/s11012-015-0193-1
  4. Robust multi-damage localisation using common eigenvector analysis and covariance matrix changes vol.111, pp.None, 2014, https://doi.org/10.1016/j.ymssp.2018.04.020
  5. Robust Baseline-Free Damage Localization by Using Locally Perturbed Dynamic Equilibrium and Data Fusion Technique vol.20, pp.20, 2014, https://doi.org/10.3390/s20205964