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Abstract 
 
The number of measured degrees of freedom for detecting the damage of any structures is usually less than the number of model degrees of 
freedom. It is necessary to expand the measured data to full set of model degrees of freedom for updating modal data. This study presents the 
expansion methods to estimate all static displacements and dynamic modal data of finite element model from the measured data. The static 
and dynamic methods are derived by minimizing the variation of the potential energy and the Gauss’s function, respectively. The applications 
illustrate the validity of the proposed methods. It is observed that the numerical results obtained by the static approach correspond with the 
Guyan condensation method and the derived static and dynamic approaches provide the fundamental idea for damage detection.  
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1. INTRODUCTION 
 
The damage detection and assessment algorithms have 

been proposed based on measured displacement data from 
a static test or measured modal data from a dynamic test.  
Static displacement responses and modal parameters such 
as eigenvalues and eigenvectors have been widely utilized 
as reference data for damage detection.  The number of 
measured degrees of freedom does not usually match the 
number of model degrees of freedom.  The data obtained 
from vibration or static testing is incomplete not to be able 
to measure all the modes or all static displacements.   
The problem can be overcome by modal reduction or data 

expansion.  This means either to reduce the system matri-
ces to the number of measured degrees of freedom or con-
versely expand the measured displacement or modal vec-
tors to full size of the finite element model matrices.  The 
model reduction methods depend on the determination of 
transformation operators which reduce the analytical 
model to the same degrees of freedom measured in test.  
And the expansion methods compute the unmeasured dis-
placements by assuming certain equilibrium conditions.   
The spatially sampled field measured during dynamic or 

static testing has been an active area of research for many 
years.  Comparing just the measured partition of the full 
analytic displacement shapes to the test displacement 
shapes, most analysis procedures are possible only when 
there is one-to-one correspondence between the modal 
degrees of freedom and the test measurements.  Most 
expansion techniques utilized involve the use of the finite 
element model as a mechanism to complete the unmeas-
ured degrees of freedom from the experimental model.   
Guyan (1965) presented a transformation matrix to estab-

lish the relationship between the expanded eigenvector and 
the measured components.  The Improved Reduced Sys-
tem (O’Callanhan 1989) is an improvement on the static 
reduction method and provides a perturbation to the trans-
formation from the static case by including the inertia 
terms as pseudo static forces.  Utilizing mass normalized 
real mode shapes determined by finite element models, 
O’Callahan et al. (1989) proposed the System Equivalent 
Reduction-Expansion Process (SEREP).  Based on a dy-
namic modal expansion which minimizes the residual error 
in the eigenvalue equation for each measured mode, Ken-
neth and Francois (2000) presented an algorithm for ex-
panding measured mode shapes obtained from modal test-
ing to the full set of degrees of freedom of a corresponding 
finite element model.  Ewins (2000) presented some defi-
nitions and a very concise summary of each of the major 
algorithms for updating problem together with some dis-
cussion of how and when each of these might be consid-
ered for use in practice.   
Although an initial theoretical model should be refined, 

corrected or updated based on measured data on the actual 
structure, the existing expansion methods are limited to the 
methods to expand the experimentally measured DOF over 
all finite element DOF under the assumption that the static 
or dynamic properties of the initial system are invariant.  
It is necessary to investigate the uniqueness of the mathe-
matical solution because the transformation matrix is rank 
deficient.   
Starting from the displacement data or dynamic modal 

data obtained from the structural analysis of initial struc-
tural system, this study focuses on the data expansion 
based on the measured displacement data and modal data, 
and aims to develop the static and dynamic expansion 
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techniques for providing damage detection and assessment 
algorithm of damaged structural systems.   Minimizing 
the objective function formulated by the difference be-
tween the computed and measured displacements or dy-
namic modal parameters, and assuming that the system 
exhibits the constrained static or dynamic behavior re-
stricted by the measured data, the static and dynamic ex-
pansion methods are presented.  It is expected that the 
proposed method can be widely utilized as basic informa-
tion for damage detection algorithm by introducing the 
concept of the displacement or mode shape curvature pro-
vided by Pandey et al. (1991).   

 
 

2. EXPANSION OF STATIC DISPLACEMENT DATA 
 

In order to identify the physical model parameters, the 
parameters of the initial analysis model must be described 
based on the measured structural behavior.  The measured 
structural behavior involves the displacement data and 
dynamic modal data from the static and dynamic testing, 
respectively.  First, we consider the static expansion 
originated from the measured displacement responses and 
expand the measured deflection data to estimate the data at 
unmeasured locations. 

Consider a discrete structural system with n  degrees 
of freedom having a stiffness matrix K characterized by n 
constitutive parameters u.  The governing equation of 
static equilibrium is 

 
 
 000 fuK =    (1) 
 
 

where 0f  is a vector of applied forces and 0u  denotes 
the corresponding response.  If the structural stiffness 
matrix exactly captures the properties of the system, and if 
the measured responses were free from error, then Eqn. (1) 
would exactly satisfy and the measured data can be ex-
panded to the all response data by the expansion tech-
niques.  Considering the difference between the com-
puted and measured displacements due to the damage of 
the member, the output error is 
 
 

 ufK −= −
0

1e    (2) 
 
 

where u is displacement vector in the finite element model 
of a structure, KKK δ+= 0 , K is the stiffness matrix of 
the damaged structure to be expressed by the sum of the 
initial stiffness 0K  and the variation of the stiffness ma-
trix Kδ  caused by the difference between the computed 
and measured displacements due to measurement errors 
and modeling errors. 

Considering the stiffness effects only, Eqn. (1) can be 
written as 

 
 

 ( ) 00 fuKK =+ δ    (3) 
 
 

where we assume that the external forces are invariant in 
the analysis process and u is the corresponding responses 
of the damaged structure.  Taking the first-order ap-
proximation of the displacement vector u , it can be writ-
ten by 

 
 
( ) ( ) 0

1
0

1
000

1
0 fKKKKfKKu 1 −−−− −≈+= δδ  

  ( ) 0
1

0 uKKI δ−−=   (4) 
 
 

The displacement change due to the damage can be de-
fined as 
 
 
 0uuu −=δ    (5) 
 
 
The damage leads to the deterioration of the stiffness and 

the displacement change calculated from Eqn. (5) should 
be positive. 

The unmeasured displacements of the damaged structure 
are obtained by minimizing an objective function formu-
lated by the displacement change vector defined by Eqn. 
(5) and a weighting matrix 0K  of the initial stiffness 
matrix, which is expressed as 

 
  
 ( ) uKu δδδ 0

min 2
1 TV =    (6) 

 
 

which expresses the variation of the potential energy due 
to the damage. 

We can express the displacement vector at the dn  
measured degrees of freedom in the finite element model 
as 

 
 
 Auu =d     (7) 

 
 

where A is an nnd ×  Boolean matrix that extracts the 
measured response du  from the complete displacement 
vector u.  The substitution of Eqn. (5) into Eqn. (7) yields 
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 ( ) duuuA =+ δ0  or 0AuuuA −= dδ  
     (8) 
 
 
In order to minimize the cost function of Eqn. (6), Eqn. 

(8) is modified as 
 
  

 0
2/12/1 AuuuKAK −=−

dδ   (9) 
 
 
Finding the general solution of Eqn. (9) with respect to 

uK δ2/1
0 , it is obtained as 

 
 

 ( ) ( )0
2/1

0
2/1

0 AuuAKuK −=
+−

dδ  

  ( ) ( )[ ]yAKAKI 2/1
0

2/1
0

−+−−+  (10) 
 
 

where y is an arbitrary and the solution of Eqn. (10) be-
comes infinite.  The condition to satisfy the variation of 
the potential energy of Eqn. (6) is 
 
 

( ) ( ) ( ) ( ) 0yAKAKIAuuAK =⎥⎦
⎤

⎢⎣
⎡ −+− −+−+− 2/12/1

0
2/1

d

     (11) 
 
 
Introducing 2/1

0
−= AKS  into Eqn. (11) and solving it 

with respect to the arbitrary vector y, it follows that 
 
 

[ ] ( ) ( ) ( ) zSSISSIIAuuSSSIy ⎥⎦
⎤

⎢⎣
⎡ −−−+−−−= +++++

0d

     (12) 
 
 

where z is another arbitrary vector.  Utilizing the proper-
ties of the generalized inverse matrix of +++ = SSSS  and 

( ) ( )SSISSI +++ −=−  into Eqn. (12), the vector y is de-
rived as 
 
  
 SzSy +=     (13) 
 
 
Subsituting Eqn. (13) into Eqn. (10) and premultiplying 

2/1
0
−K  at both sides, the displacement variation is ob-

tained as 
  

 ( ) ( )0
2/1

0
2/1

0 AuuAKKu −=
+−−

dδ  (14) 

Thus, the displacement vector of the damaged structure 
can be expressed as 
 
  

 ( ) ( )0
2/1

0
2/1

00 AuuAKKuu −+=
+−−

d  (15) 
 
 
The static displacements of the full size of the finite ele-

ment model can be calculated by Eqn. (15) from the in-
formation on the initial displacements of intact structure.   

 
 

3. EXPANSION OF DYNAMIC MODAL DATA 
 

An initial theoretical model constructed for analyzing 
the dynamics of a structure can be refined, corrected or 
updated, using measured on the actual structure, has be-
come one of the most demanding and demanded applica-
tions for modal testing.  The number of measured degrees 
of freedom does not usually match the number of model 
degrees of freedom, so expansion of the mode shapes is 
necessary. 

The dynamic behaviour of a structure which is assumed 
to be linear and approximately discretized for n degrees of 
freedom can be described by the equations of motion 

 
    
 ( )tfKuuCuM =++ &&&   (16) 
 
 

where [ ]Tnuuu L21=u , and nnR ×∈M , 
nnR ×∈C  and nnR ×∈K  are the mass, damping and 

stiffness matrices, respectively.  And ( )tf  is the 1×n  
load excitation vector.  Without loss of generality, 
Rayleigh damping is adopted as 
 
 
 KMC βα +=    (17) 
 
 

where α  and β  are the two proportionality constants 
which can be related to the damping ratios of the first and 
second natural modes.  

In order to expand the measured mode shapes to esti-
mate the data of unmeasured mode shapes, this study in-
troduces an analytical method by minimizing the perform-
ance index as a function of the changes of the mode shape.  
In this process, we can utilize the measured mode shapes 
as the dynamic constraints to describe the modal character-
istics of the damaged structure.   

Let us define the i-th mode shapes of undamaged and 
damaged structures as 0,iφ  and di,φ  ( ni ,...2,1= ), re-
spectively, and the corresponding natural frequencies as 

0,iω  and di,ω , respectively.  If the dynamic system of 
Eqn. (16) is undamped or only lightly damped, the charac-
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teristic features of the system are natural frequencies 0,iω  
and the normal modes 0,iφ , which can be calculated from 
an eigenvalue problem. 

In order to expand the measured mode shapes to the full 
degrees of freedom, we utilize the Gauss’s principle.  The 
Gauss’s principle indicates that the accelerations u&&  are 
such that the Gaussian function G defined as 

 
 
 [ ] [ ]auMau −−= &&&& TG   (18) 
 
 

is minimized over all u&&  which satisfy the constraint 
equation, where u&&  and a represent the acceleration vec-
tors for constrained and unconstrained systems, respec-
tively.  From the modal relationship, the Gauss’s function 
is modified as 
 
 

[ ] [ ]didiii
T

didiiiG ,
2
,0,

2
0,,

2
,0,

2
0, φφMφφ ωωωω −−= , 

  dni ,...,2,1=   (19) 
 
 
The measured mode shapes represent a part of mode 

shapes of damaged structure and restrict the dynamic char-
acteristics.  Let us assume the dn  measured mode 
shapes at the i-th mode as the dynamic constraints to be 
 
    
 bφA =didi ,

2
,ω , nnd <   (20) 

 
 

where the matrix A is an nnd ×  Boolean matrix to ex-
hibit the measuring positions.  Modifying Eqn. (20) as 

bφMAM =−
didi ,

2/12
,

2/1 ω , defining 2/1−= AMQ  and 

solving it with respect to didi ,
2/12

, φMω , the result can be 
derived as 
  

 ( )hQQIbQφM ++ −+=didi ,
2/12

,ω  (21) 
 
 

where h is an arbitrary vector.  Utilizing Eqn. (21) into 
Eqn. (19) and minimizing the result, it follows that 
 
  

 ( ) 0,
2/12

0, ii φMhQQIbQ ω=−+ ++  (22) 
 
 
Solving Eqn. (22) with respect to the arbitrary vector h, 

we obtain  
  

 ( ) QxQφMQQIh ++ +−= 0,
2/12

0, iiω  (23) 

where x denotes another arbitrary vector.  Substituting 
Eqn. (23) into Eqn. (21) and arranging the result, it follows 
that 
 

( ) ( )0,
2
0,

2/1
0,

2/12
0,,

2/12
, iiiididi AφbAMφMφM ωωω −+=

+−

     (24) 
 
 
Finally, all mode shapes of the damaged dynamic system 

can be derived as 
 

( ) ( )0,
2
0,

2/12/1
2
,

0,

2

,

0,
,

1
ii

di
i

di

i
di AφbAMMφφ ω

ωω
ω

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+−−

     (25) 
 
 
It is observed that the mode shapes at unmeasured de-

grees of freedom can be estimated based on the measured 
mode shapes and the initial mode shapes of the intact sys-
tem by Eqn. (25). 
 
 

4. APPLICATIONS 
 

As an example, we consider a complicated structural 
system shown in Fig. 1.  The static equilibrium equation 
of the system can be written in matrix form of 

 
 
 FKu =     (26) 

 
where [ ]Tuuuuu 54321=u , 

 [ ]TFFFFF 54321=F , and 
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     (27) 
 
 
Assuming that the system is damaged and the stiffness 
3k  is reduced to 38.0 k , the static displacements of the 

damaged structure with the following numerical values are 
calculated by 
 
 N/mm5001 =k , N/mm4502 =k ,  
 N/mm6003 =k , N/mm3004 =k ,  

N/mm9005 =k , N/mm5006 =k , N/mm8007 =k , 
 N/mm4008 =k , N/mm7709 =k  

05321 ==== FFFF ,  N10004 =F   
     (28) 
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Assuming that the static displacements at two nodal 
points 2 and 3 are measured, the displacements at the un-
measured nodal points can be estimated by utilizing the 
expansion equation of Eqn. (15), the initial stiffness matrix 
of Eqn. (27), 0K  and the measured displacements.  
 
 

[ ] ( )mm7696.05904.12802.10998.18149.00
T=u  

  ⎥
⎦

⎤
⎢
⎣

⎡
=

00100
00010

A  

 mm1121.1,2 =du ,  mm3343.1,3 =du  
     (29) 
 
 
Figure 2 compares the actual displacements of the dam-

aged structure and the estimated displacements by the ex-
pansion method.  As shown by the plots, the expansion 
method exactly estimates the nodal displacements at nodes 
2, 3, 4 and 5 except node 1.  Although the displacement 
at node 1 exhibits the displacement difference of about 5%, 
it can be concluded that the proposed expansion method 
describes properly the static displacements at unmeasured 
nodal points.   
 
 

 
 

Figure 1. A five degrees of freedom system 
 
 
 

As another example, let us consider a dynamic system 
without damping shown in Fig. 3.  The dynamic equation 
of motion for the system can be derived as 

 
 
 )(tFKuuM =+&&    (30) 

 
where [ ]Tuuuuuu 654321=u ,  

[ ]( )654321 mmmmmmdiag=M , and 
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     (31) 

 
 

Figure 2. Displacement comparison 
 
 
 
Let us assume the following values for obtaining the mo-

dal parameters of the initial system. 
 
 

/mmsecN9.1,4.1,6.1,0.1,3.1,1 2
654321 ⋅====== mmmmmm  

 
 N/mm5001 =k , N/mm4502 =k ,  
 N/mm6003 =k , N/mm3004 =k ,  
 N/mm9005 =k , N/mm5006 =k ,  
 N/mm8007 =k , N/mm4008 =k   (32) 
 
 

The first two eigenvalues and the corresponding eigen-
vectors of the initial system can be calculated as 
  
 

( )22
,1 .sec/.7.38 rado =ω ,  ( )22

,2 .sec/.9.387 rado =ω  

[ ]To 4699.02946.01164.03860.04682.00575.0,1 =φ

[ ]To 4699.02946.01164.03860.04682.00575.0,1 =φ
     (33) 
 
 

 
 

Figure 3. A structural system 
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Assuming that the system is damaged and the stiffness of 
3k  is reduced by 80%, the modal parameters of the initial 

system must be changed.  Assume that the first two ei-
genvalues and the eigenvectors corresponding to nodes 2 
and 3 of the damaged structure are measured. 
 
 
 ( )22

,1 .sec/.9.36 radd =ω ,  ( )22
,2 .sec/.9.363 radd =ω  

( ) 4642.02,1 =dφ ,  ( ) 3867.03,1 =dφ  

( ) 2438.02,2 −=dφ ,  ( ) 1692.03,2 =dφ   

     (34) 
 
 
The mode shape values at the unmeasured nodes can be 

calculated from Eqn. (25) utilizing the measured modal 
parameters and the following values. 
 
 

 ,
000100
000010
⎥
⎦

⎤
⎢
⎣

⎡
=iA    2,1=i  

 ⎥
⎦

⎤
⎢
⎣

⎡
=
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1b , ⎥
⎦

⎤
⎢
⎣

⎡−
=

59.61
73.88

2b  

     (35) 
 
 
The first two mode shape vectors can be estimated by 

Eqn. (25).  Figure 4 exhibits that the proposed method 
properly describes the unmeasured mode shapes although 
the numerical results locally exhibited the maximum de-
viation of 6.4 and 13.4% from the actual first and second 
mode shapes, respectively.  The modal data of the full set 
of finite element degrees of freedom to be obtained by the 
proposed method should provide the fundamental idea for 
damage detection.  
 
 
 

 
(a) 

 
(b) 

 
Figure 4. Numerical comparison of eigenanalysis and expansion method 

of damage structure; (a) the first mode, (b) the second mode 
 
 
 

5. CONCLUSIONS 
 

This study provided the expansion method to estimate 
the static and dynamic data at the unmeasured nodes based 
on the measured static displacement or measured modal 
parameters. Utilizing the measured data as the constraints 
for static and dynamic behavior, the expansion methods 
were derived by minimizing the variation of the potential 
energy for static approach and the Gauss’s function for 
dynamic approach. Although the proposed methods exhibit 
some deviation from the actual data, it can be concluded 
that they properly describe the static displacements and 
dynamic modes of the full set of finite element degrees of 
freedom.  It is recognized that the proposed methods can 
be widely utilized in the damage detection methods. 
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