• Title/Summary/Keyword: electronic nose system

Search Result 105, Processing Time 0.039 seconds

Analysis of the Different Heated Milks using Electronic Nose (열처리를 달리한 시유의 전자코 분석)

  • Hong, Eun-Jeung;Noh, Bong-Soo;Park, Seung-Yong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.851-859
    • /
    • 2010
  • This study was conducted to investigate the application of a model system using an MS-electronic nose based on the discriminative function analysis on volatile flavors, to prediction of the shelf-life of market milk by preservation temperature and differently-loaded heat treatment. On mass spectrum, the ion fragments of volatile flavors of milk obtained from MS-electronic nose could be distinguished at amu 60, 91, 92, and 93. The response levels of volatile flavors at each amu increased in proportion to the heat treatment loaded to the milk, in the order of LTLT, HTST, and UHT. This study indicated that the discriminative function scores of the volatile flavors seemed to correlate with the preservation temperature, storage period, and heat treatment conditions; DF1 (discriminative function first score) showed a strong relationship to storage periods, with $r^2$ of 0.9965, 0.9965, and 0.9911 at temperatures of 4, 7, and $10^{\circ}C$, respectively, while DF2 was influenced by heat treatment conditions with an $r^2$ of 0.9861 at $4^{\circ}C$. It is suggested that the discriminative function analysis given by an MS-electronic nose could be used to construct a new quality control model system for the evaluation of heat treatment loaded during the processing of milk, and for predicting storage periods of market milk.

Characteristic Classification of Aroma Oil with Gas Sensors Array and Pattern Recognition (가스센서 어레이와 패턴인식을 활용한 아로마 오일의 특성 분류)

  • Choi, Il-Hwan;Hong, Sung-Joo;Kim, Sun-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • An evaluation system for an electronic-nose concept using three types of metal oxide gas sensors that react similarly to the human olfactory cells was constructed for the quantitative and qualitative evaluation of aroma fragrances. Four types of aroma fragrances (lavender, orange, jasmine, and Roman chamomile), which are commonly used in aromatherapy, were evaluated. All the gas sensors reacted remarkably to the aroma fragrances and the good correlation of r=0.58-0.88 with the aromatic odor intensities by olfaction was confirmed. From the results of the analysis of an electronic-nose concept for classifying the characteristics of aroma oil fragrances, aroma oils could be classified using the fragrance characteristics and oil extraction methods with the cumulative variability contribution rate of 95.65% (F1: 69.65%, F2: 26.03%) by principal component analysis. In the pattern recognition based on the artificial neural network, the four aroma fragrances were 100% recognized through the training data of 56 cases (70%) out of 80 cases, and the pattern recognition rate was 57.1%-71.4% through the validation and testing data of 24 cases (30%). The pattern recognition success rate through all confusion matrices was 82.1%, indicating that the classification of aroma oil fragrances using the three types of gas sensors was successful.

Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose (휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식)

  • Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.

Analysis for Cyclodextrins to Entrap with Hexanal using Electronic Nose (전자코를 이용한 헥사날과 싸이클로덱스트린의 결합 분석)

  • Youn, Aye-Ree;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The effectiveness of cyclodextrin(CD) on binding and/or entrapping hexanal in model solution was investigated. The types and concentration of CDs for entrapping hexanal were studied using electronic nose, which composed of metal oxide sensor or was based on GC with surface acoustic wave sensor. ${\alpha}-CD$ was the most effective for lowering headspace concentration of hexanal in model solution. As concentration of CD increased, hexanal concentration in the headspace decreased significantly. Addition of 5% ${\beta}-CD$ to hexanal in model system resulted in 86% reduction of hexanal in the headspace. There was no difference between control and treatment at the initial stage of binding CD with hexanal while reduction of hexanal in the headspace was found during storage time. This could be estimated by electronic nose.

Classification of Japonica Varieties by Volatile Component Patterns of Milled and Cooked Rice Using Electronic Nose (전자코를 이용한 자포니카벼 품종의 쌀과 밥 향기패턴 분류)

  • Song Jin;Son Jong-Rok;Park Nam-Kyu;Cho Hae-Young;Chang Kyu-Seob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.447-452
    • /
    • 2005
  • This study was performed to investigate the differences among the 44 varieties of Japonica rice by using the electronic nose. The volatile patterns of milled rice and its cooked rice were generated by twelve metal oxide sensors (MOS). The MSO responses were evaluated by principal component analysis and cluster analysis. Milled rice was classified into three groups; Group I included most of varieties, Group II was Daejinbyeo, Chucheongbyeo, and Group III was Mangumbyeo, Nampyeongbyeo, Shindongjinbyeo. But the discrimination of cooked rice was not identified. Also the result of correlation analysis appeared that the volatile of milled rice was not significantly related to that of cooked rice. Electronic nose system was considered as not depend on our study results sufficient to predict the volatile pattern of cooked rice.

Discrimination of Ginseng Habitat by Using Instrumental Analysis Techniques

  • Sohn H. J.;Lee S. K.;Cho B. G.;Kim S. J.;Lee N. Y.;Choi D. S.;Jeong M. S.;Bae H. R.;Yang J. W.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.238-252
    • /
    • 2002
  • In order to screen out indicators for the discrimination of ginseng habitat, some physical and chemical characteristics of Korean red ginsengs (94 kinds) and Chinese red ginsengs (50 kinds) were analyzed by using a rheometer, an electronic nose system, a combined technique of solid phase micro-extraction (SPME) and gas chromatograph equipped with an electron capture detector (GC/ECD), an X-ray fluorescence spectrometer (XRF), an inductively coupled plasma mass spectrometer (ICP/MS), a near infrared spectrometer (NIRs) and high performance liquid chromatography equipped with evaporative light scattering detector (HPLC/ELSD). The results are summarized as follows: (i) The rhizome strengths of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. (ii) The electronic nose patterns of Korean red ginsengs were significantly different from those of Chinese red ginsengs. (iii) Some unidentified peaks were detected not in the headspace of Korean red ginsengs but in the headspace of Chinese red ginsengs when the headspace volatiles prepared by the SPME technique were analyzed by GC/ECD. (iv) Either the content ratios of K to Ca or Mn to Fe were significantly different between Korean red ginsengs and Chinese red ginsengs. (v) The reflectance ratios of NIRs wavenumbers such as $904\;cm^{-1}\;to\;1088\;cm^{-1}$ for Korean red ginsengs were significantly different from those for Chinese red ginsengs. (vi) The content ratios of ginsenoside-Rg to ginsenoside-Re of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. These results indicate that the rhizome strength, the electronic nose pattern, the occurrence of ECD-sensitive headspace volatile components, the content ratios of K to Ca and Mn to Fe, the NIRs pattern and the content ratio of ginsenoside-Rg to -Re may be indicators for the discrimination of ginseng habitat.

  • PDF

Chip design and application of gas classification function using MLP classification method (MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용)

  • 장으뜸;서용수;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

LM-BP algorithm application for odour classification and concentration prediction using MOS sensor array (MOS 센서어레이를 이용한 냄새 분류 및 농도추정을 위한 LM-BP 알고리즘 응용)

  • 최찬석;변형기;김정도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.210-210
    • /
    • 2000
  • In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously. However, the conventional MLP, which is back-Propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fall into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm [4,5] having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.

  • PDF

Improved sensitivity of surface acoustic wave gas sensor by using polyurethane absorption layer (폴리우레탄 감지막에 의한 표면탄성파 가스 센서의 감지능 향상)

  • Yoo, Beom-Keun;Park, Yong-Wook;Choi, Doo-Jin;Kim, Hyun-Jai;Kim, Jin-Sang;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.364-364
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as ethanol gas by measuring phase shift of output signal. A delay-line with a center frequency of 400MHz was fabricated on 128o Y-Z $LiNbO_3$ substrates. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. The sensitivities of SAW delay lines coated with polyurethane films are greatly increased compared to those for uncoated devices. This SAW gas sensor system may be well suited for a high sensitivity electronic nose system.

  • PDF