• Title/Summary/Keyword: electron trapping

Search Result 108, Processing Time 0.024 seconds

Surface Photovoltage Spectroscopy on Dyed Zinc Oxide (색소흡착산화아연에 대한 표면광기전력의 분광학적 연구)

  • Kim, Young-Soon;Sung, Yong-Kiel
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.251-258
    • /
    • 1984
  • The mechanism of photosensitization and the affect of binder on dye-sensitized ZnO have been studied by surface photovoltage spectroscopy. It has been found that the value of energy trapping level $E_{t1}$ on ZnO is 1.12eV (${\lambda$ = 1,100nm) and that of energy trapping level $E_{t2}$ on dye-sensitized ZnO is 0.99eV (${\lambda$ = 1,250nm) which is shifted towards a longer wavelength. The effect of binder on ZnO has been increased the efficiency of surface photovoltage, but it does not effect the values of energy trapping level. The acid-type dyes agree well with the prediction based on an electron transfer mechanism. The desensitization of the Na salt-type dyes for the intrinsic photoresponse of zinc oxide can be explained by energy transfer mechanism. It has been obtained that the dye-sensitized ZnO indicates the possibility of electrophotographic photosensitizer for the infrared range of light.

  • PDF

Current Increase Effect and Prevention for Electron Trapping at Positive Bias Stress System by Dropping the Nematic Liquid Crystal on the Channel Layer of the a-InGaZnO TFT's

  • Lee, Seung-Hyun;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.163-163
    • /
    • 2015
  • The effect of nematic liquid crystal(5CB-4-Cyano-4'-pentylbiphenyl) on the amorphous indium gallium zinc oxide thin film transistors(a-IGZO TFTs) was investigated. Through dropping the 5CB on the a-IGZO TFT's channel layer which is deposited by RF-magnetron sputtering, properties of a-IGZO TFTs was dramatically improved. When drain bias was induced, 5CB molecules were oriented by Freedericksz transition generating positive charges to one side of dipoles. From increment of the capacitance by orientation of liquid crystals, the drain current was increased, and we analyzed these phenomena mathematically by using MOSFET model. Transfer characteristic showed improvement such as decreasing of subthreshold slope(SS) value 0.4 to 0.2 and 0.45 to 0.25 at linear region and saturation region, respectively. Furthermore, in positive bias system(PBS), prevention effect for electron trapping by 5CB liquid crystal dipoles was observed, which showing decrease of threshold voltage shift [(${\delta}V$]_TH) when induced +20V for 1~1000sec at the gate electrode.

  • PDF

Determination of Free Radicals in Mainstream Cigarette Smoke by Electron Spin Resonance (전자스핀공명에 의한 담배연기 중 자유라디칼 측정)

  • Lee, Jeong-Min;Lee, John-Tae;Park, Jin-Won;Hwang, Keun-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.146-151
    • /
    • 2007
  • Gas phase and particulate phase radicals in mainstream cigarette smoke were determined Electron Spin Resonance(ESR) spectroscopy. The free radicals in particulate phase have been investigated by benzene extract of Cambridge Filter Pad containing the smoke condensate. Spin trapping method in conjunction with ESR was used to investigate free radicals in the gas phase of cigarette smoke. Several analytical experiments were conducted in order to determine the optimal conditions for maximum signal intensities and reproducibility of results. All the tests were optimized and normalized using the University of Kentucky 2R4F reference cigarette. The optimal conditions were 0.6 mL for analysis volume of ESR, $4{\sim}5\;mL$ for collection volume of spin-adducts, and PBN for quantification of free radicals in gas phase. The radical levels of Kentucky 2R4F cigarettes were found $2.18{\times}10^{14}\;spins/cig.$ and $2.10{\times}10^{15}\;spins/cig.$ in gas phase.

Suppression of Boron Penetration into Gate Oxide using Amorphous Si on $p^+$ Si Gated Structure (비정질 실리론 게이트 구조를 이용한 게이트 산화막내의 붕소이온 침투 억제에 관한 연구)

  • Lee, U-Jin;Kim, Jeong-Tae;Go, Cheol-Gi;Cheon, Hui-Gon;O, Gye-Hwan
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.125-131
    • /
    • 1991
  • Boron penetration phenomenon of $p^{+}$ silicon gate with as-deposited amorphous or polycrystalline Si upon high temperature annealing was investigated using high frequency C-V (Capacitance-Volt-age) analysis, CCST(Constant Current Stress Test), TEM(Transmission Electron Microscopy) and SIMS(Secondary Ion Mass Spectroscopy), C-V analysis showed that an as-deposited amorphous Si gate resulted in smaller positive shifts in flatband voltage compared wish a polycrystalline Si gate, thus giving 60-80 percent higher charge-to-breakdown of gate oxides. The reduced boron penetration of amorphous Si gate may be attributed to the fewer grain boundaries available for boron diffusion into the gate oxide and the shallower projected range of $BF_2$ implantation. The relation between electron trapping rate and flatband voltage shift was also discussed.

  • PDF

Lubricating Effect of Water-soluble Hexagonal Boron Nitride Nanolubricants on AISI 304 Steel Sliding Pair

  • Gowtham Balasubramaniam;Dae-Hyun Cho
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.43-48
    • /
    • 2023
  • In this study, we investigate the tribological behavior of AISI 304 stainless steel pairs under deionized water and hexagonal boron nitride (h-BN) water dispersion lubrication. The specimen friction and wear properties are evaluated using a reciprocating ball-on-flat tribometer. The coefficient of friction remains nearly constant throughout the test under both lubricant conditions. The wear depth of the specimens under h-BN lubrication is smaller than that under deionized water lubrication, indicating the inhibition behavior of h-BN nanolubricants on direct metal-metal contacts. Optical micrographs and stylus profilometer measurements are performed to evaluate the severity of damage caused by the sliding motion and to determine the wear morphology of the specimens, respectively. The results show that h-BN nanolubricants does not have a significant effect on the friction behavior but demonstrates reduced wear owing to their trapping effect between the sliding interfaces. Moreover, scanning electron microscopy and energy-dispersive X-ray spectroscopy images of the specimens were acquired to confirm the trapping effect of h-BN between the sliding interfaces. The results also suggest that the trapped lubricants can distribute the contact pressure, reducing the wear damage caused by the metal-metal contact at the interface. In conclusion, h-BN nanolubricants have potential as an anti-wear additive for lubrication applications. Further investigation is needed to provide direct evidence of the trapping effect of h-BN nanoparticles between the sliding interfaces. These findings could lead to the development of more efficient and effective lubricants for various industrial applications.

Degradation Characteristics of Hot-Electron-Induced p-MOSFET's GateOxide Thickness Variations by Stress (스트레스에 의한 핫-전자가 유기된 p-MOSFET의 게이트 산화막 두께 변화의 열화의 특성 분석)

  • Yong Jae Lee
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.77-83
    • /
    • 1994
  • Characteristics of hot-electron-induced degradation by AC, DC was investigated for p-MOSFET's(W/L=25/l$\mu$m) with sub-10nm RTP-CVD gate oxides. It was confirmed that the surface channel p-MOSFET of a thinner gate oxide shows less degradation. Mechanisms for this effect were analyzed using a simple MOS Device degradation model. It was found that the number of generated electron traps(fixed charge) is determined by the amount of peak gate current, dependent of the gate oxide thickness, and the major cause of the smaller degradation in the thinner gate oxide devices is the lower hot electron trapping carriers.

  • PDF

A Study on Carrier Injection and Trapping by the High Field for MAS (Al-Al2O3-Si(n)) Structure ($Al-Al_2O_3-Si$(N형)의 MAS 구조에 있어서 고전계에 의한 Carrier 주인과 트?에 관한 연구)

  • 이영희;박성희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.465-472
    • /
    • 1986
  • The present study was carried out to investigate the mechanism which control the voltage instability and the breakdown of CVD Al2O3 on Si substrates. Our sample were metal-Al2O3-Oi Capacitors with both Al and Au field plates. Electron injection and trapping, with resultant positive flatband voltage shift, occur at fields as low as 1-2[MV/cm.] We developed an approximate method for computing the location of the centroid of the trapped electrons. Our results indicate that the electrons are trapped near the injecting interface, at least for fields less than about 5[MV/cm ] Because of continued charging, a true steady state is probably never reached, and the only unique I-V curve is the one obtained initially, when the traps are empty. We measured this I-V curve for both polarities of applied voltage, using a fresh sample for each point. The observed current densities are much larger than those obtained in thermally grawn SiO2.

  • PDF

Field Effect Transistor of Vertically Stacked, Self-assembled InAs Quantum Dots with Nonvolatile Memory

  • Li, Shuwei;Koike, Kazuto;Yano, Mitsuaki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.170-172
    • /
    • 2002
  • The epilayer of vertically stacked, self-assembled InAs Quantum Dots (QDs)was grown by MBE with solid sources in non-cracking K-cells, and the sample was fabricated to a FET structure using a conventional technology. The device characteristic and performance were studied. At 77K and room temperature, the threshold voltage shift values are 0.75V and 0.35 V, which are caused by the trapping and detrapping of electrons in the quantum dots. Discharging and charging curves form the part of a hysteresis loop to exhibit memory function. The electrical injection of confined electrons in QDs products the threshold voltage shift and memory function with the persistent electron trapping, which shows the potential use for a room temperature application.

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Su;Hwang, Han-Uk;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

Comparison of the PSD radial profiles between before and after geosynchronous flux dropout: case studies using THEMIS observations

  • Hwang, Junga;Lee, Dae-Young;Kim, Kyung-Chan;Choi, Eunjin;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.122-122
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report some case studies showing energy dependence during magnetopause shadowing effect.

  • PDF