• 제목/요약/키워드: electron transport properties

검색결과 288건 처리시간 0.028초

Pulse 전위를 적용한 전기화학적 증착 공정으로 제조된 가시광 활성 이종접합 $CuInS_2-TiO_2$ Nanotube 화합물 광전극 (Visible Light-Driven $CuInS_2-TiO_2$ Nanotube Composite Photoelectrodes with Heterojunction Structureusing Pulsed-Electrochemical Deposition Process)

  • 윤정호;;박영구
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.49-56
    • /
    • 2013
  • Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional $TiO_2$ nanotube(TNT) arrays an alternative candidate over $TiO_2$ nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive $CuInS_2$ (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular $TiO_2$ allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.

분자 끈을 활용한 CdSe/ZnS 양자 점의 향상된 배열 (Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots)

  • 조근태;이종현;남혜진;정덕영
    • Korean Chemical Engineering Research
    • /
    • 제46권6호
    • /
    • pp.1081-1086
    • /
    • 2008
  • 양자 점을 이용한 QD-LED(Quantum Dot - Light Emitting Device)의 소자 제작을 하기 위해서는 양자 점의 균일한 배열이 중요하다. 핵-껍질(core-shell) 구조의 CdSe/ZnS 양자 점을 기판에 고 밀도, 고 균일도로 배열하기 위하여 두 종류의 분자 끈(molecular linker)을 사용하였고, 공정의 단순화와 비용 절감을 위하여 고분자 도장인 PDMS(polydimethylsiloxane)를 이용한 미세접촉인쇄방법으로 양자 점들을 배열하였다. $TiO_2/ITO$ 기판에 양자 점을 고정시켜주는 역할을 하는 분자 끈으로는 2-carboxyethylphosphonic acid(CAPO)를 사용하였고, 양자 점 사이의 인력을 향상시켜주는 분자 끈으로는 1,6-hexanedithiol(HDT)을 사용하였다. 양자 점들의 배열 특성을 주사전자현미경(SEM, scanning electron microscope)과 원자 힘 현미경(AFM, atomic force microscope)으로 분석하였고, 광 발광분광기(PL, photoluminescence spectroscope)로 발광특성을 측정하였다.

Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer Solar Cells

  • Yoo, Seong Il;Do, Thu Trang;Ha, Ye Eun;Jo, Mi Young;Park, Juyun;Kang, Yong-Cheol;Kim, Joo Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.569-574
    • /
    • 2014
  • Inverted bulk hetero-junction polymer solar cells (iPSC) composed of P3HT/PC61BM blends on the ZnO modified with benzoic acid derivatives-based self-assembled monolayers (SAM) are fabricated. Compared with the device using the pristine ZnO, the devices with ZnO surface modified SAMs derived from benzoic acid such as 4-(diphenylamino)benzoic acid (DPA-BA) and 4-(9H-carbazol-9-yl)benzoic acid (Cz-BA) as an electron transporting layer show improved the performances. It is mainly attributed to the favorable interface dipole at the interface between ZnO and the active layer, the eective passivation of the ZnO surface traps, decrease of the work function and facilitating transport of electron from PCBM to ITO electrode. The power conversion eciency (PCE) of iPSCs based on DPA-BA and Cz-BA treated ZnO reaches 2.78 and 2.88%, respectively, while the PCE of the device based on untreated ZnO is 2.49%. The open circuit voltage values ($V_{oc}$) of the devices with bare ZnO and SAM treated ZnO are not much different. Whereas, higher the fill factor (FF) and lower the series resistance ($R_s$) are obtained in the devices with SAMs modification.

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

진공열증착으로 성막된 산화구리 박막의 p-형 전도특성 (P-type transport characteristics of copper-oxide thin films deposited by vacuum thermal evaporation)

  • 이호년;송병준
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2267-2271
    • /
    • 2011
  • p-채널 박막트랜지스터에 이용할 수 있는 p-형 산화구리 박막반도체를 얻기 위한 연구를 하였다. 진공열증착방법으로 산화구리 박막을 성막하였으며, 증착 후 열처리 조건을 조절하여 박막트랜지스터의 활성층에 적용 가능한 특성을 가지는 산화구리 박막반도체를 얻었다. 열처리 전에 $10^{22}\;cm^{-3}$ 수준의 전자 이송자농도를 가지던 n-형 박막이 열처리 조건을 최적화함에 따라 $10^{16}\;cm^{-3}$ 수준의 정공 이송자농도를 가지는 p-형 산화물반도체 박막으로 변화하였다.

Se, As 및 Te를 이용한 고감도 다층 광도전막의 제작 및 그 응용 (Fabrication of High Sensitive Photoconductive Multilayer Using Se,As and Te and its Application)

  • 박기철;이건일;김기완
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.422-429
    • /
    • 1988
  • The photoconductive multilayer of Se-As(hole blocking layer)/Se-As-Te (photoconductive layer) /Se-As (layer for supporiting hole transport)/Se-As(layer or controlling total capacitance)/Sb2S3(electron blocking layer) was fabricated and its electrical and optical properties were investigated. The photoconductive multilayer is made of evaporated a-Se as the base material, doped with As and Te to prevent the crystallization of a-Se and to enhance red sensitivity, respectively. The multilayer with good image reproducibility has the following deposition condition. The first layer has the thickness of 250\ulcornerat the deposition rate of 250\ulcornersec. The second layer has the thickness of 800\ulcornerat the deposition rate of 250\ulcornersec. The third layer has the thickness of 125\ulcornerat the deposition rate of 250\ulcornersec. The fourth layer has the thickness of 1700\ulcornerunder the Ar gas ambient of 50x10**-3torr. The image pick-up tube, employing this multilayer demonstrates the following characteristics. The photosensitivity is 0.8, the resolution limit is above 300TV line, and the decay lag is about 7%. And spectral response convers the whole visible range. Therfore the application to color TV camera is expected.

  • PDF

Growth of superconducting $MgB_2$ fibers for wire applications

  • Kim J. H.;Yoon H. R.;Jo W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권4호
    • /
    • pp.1-3
    • /
    • 2005
  • Superconducting $MgB_2$ fibers are in-situ grown by a diffusion method. The fibers are prepared by exposing B filaments to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The materials are sealed inside a quartz tube by gas welding. The as - grown fibers are characterized by scanning electron microscopy and energy dispersive x - ray analysis. The fibers have a diameter of about $110{\mu}m$. Surface morphology of the fibers looks dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed and analyzed over the cross - sectional area. Transport properties of the $MgB_2$ fibers are examined by a physical property measurement system. The $MgB_2$ fibers grown at $900^{\circ}C$ for 2 hours show a superconducting transition at 39.8K with ${\Delta}T_c<$ 2.0 K. Resistance at room temperature $MgB_2$ is 3.745 $\Omega$ and residual resistivity ratio (RRR) is estimated as 4.723.

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro;Kang, Cheon Soo;Hayashi, Takuya;Kim, Yoong Ahm
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.60-65
    • /
    • 2018
  • Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

음극접합층으로 Cz-TPD를 사용한 OELD의 전기적 광학적 특성 (The electrical and optical Properties of the OELD using the Cz-TPD for cathode interface layer)

  • 최완지;임민수;정득영;이정구;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.124-127
    • /
    • 2002
  • In this study, The cathode interface layer (CIL) was investigated using aromatic diamine derivatives. Cz-TPD (4,4'-biscarbazolyl(9)-biphenyl) used in the cathode interface layers is investigated emition charcaracteristics at the green organic electroluminescent devices. TPD (N,N' -dyphenyl -N -N'-bis (3-methy phenyl)-1,1' -biphenyl-4,4' -diamine) as the hole transformer layer and $Alq_{3}:tris$ (8-hyd-roxyquinoline) aluminium) as the electron transport layer and emiting layer maded use of the organic electroluminescent device. The Organic Electroluminescent Device with Ag cathode and CIL of Cz-TPD(4,4'-biscarbazolyl(9)-biphenyl) showed good EL characteristics compare to a conventional Mg:Ag device and also an improved storage stability. [1] As the change in MgAg, Cz-TPD/Ag, Ag at the chthode, the electrical and optical charcaracteriseics were investigated.

  • PDF