• Title/Summary/Keyword: electron transport properties

Search Result 288, Processing Time 0.03 seconds

페로브스카이트 태양전지용 홀 전도체 개발과 비납계 페로브스카이트 연구 동향

  • Song, Myeong-Gwan
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.98-111
    • /
    • 2018
  • The lead-based perovskite (CH3NH3PbI3) material has a high molar coefficient, high crystallinity at low temperature, and long range of balanced electron-hole transport length. In addition, PCE of perovskite solar cells (PSCs) has been dramatically improved by over 22% by amending the electronic quality of perovskite and by using state-of-the-art hole transporting materials (HTMs) such as tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) due to enhanced charge transport toward the electrode via properly aligned energy levels with respect to the perovskite. Replacing the spiro-OMeTAD with new HTMs with the desired properties of appropriate energy levels, high hole mobility in its pristine form, low cost, and easy processable materials is necessary for attaining highly efficient and stable PSCs, which are anticipated to be truly compatible for practical application. Furthermore, Recently Pb-free perovskite materials much attention as an alternative light-harvesting active layer material instead of lead based perovskite in photovoltaic cells. In this work, we demonstrate a Pb-free perovskite material for the light harvesting and emitter as optoelectronic devices.

Electrochemical Properties of Polypyrrole Enzyme Electrode Immobilized Glucose Oxidase with Different Ligand (포도당 산화효소를 고정화한 Polypyrrole 효소전극의 배위자 변화에 따른 전기화학적 특성)

  • 김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.529-532
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-75, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-TS Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a tent of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Magnetic dependence of cyclotron resonance in the electron-piezoelectric phonon interacting materials

  • Park, Jung-Il;Sug, Joung-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • Based on quantum transport theory, we investigated theoretically the magnetic field dependence of the quantum optical transition of quasi 2-dimensional Landau splitting system, in CdS and ZnO Through the analysis of the current work, we found the increasing properties of the cyclotron resonance line-profiles (CRLPs) which show the absorption power and the cyclotron resonance line-widths (CRLWs) with the magnetic field in CdS and ZnO We also found that that CRLWs, γtotal(B) of CdS < γtotal(B) of ZnO in the magnetic field region B < 15 Tesla.

Electrical Conduction Properties of OLED Device with Varying Temperature (온도 변화에 따른 OLED 소자의 전기전도 특성)

  • Lee, Ho-Shik;Kim, Gwi-Yeol;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2361-2365
    • /
    • 2007
  • Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes(OLEDs) were studied. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3- methylrhenyi)-1,1'-diphenyl-4,4'-diamine (TPD) as a hole transport and tris(8-hydroxyquinoline) aluminum(Alq3) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs was interpreted in terms of tunneling and trap-filled limited current.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Epitaxial Growth and Characterization of Zinc-blende CrAs/GaAs/MnAs/GaAs Multilayers

  • Wang W.H.;Manago T.;Akinaga H.
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • We report on the growth, structural and transport properties of zinc-blende CrAs/GaAs/MnAs/GaAs multilayers on GaAs(001) substrates. Structural analyses using in-situ reflection high-energy electron diffraction and exsitu cross-sectional transmission electron microscopy confirmed the realization of a zinc-blende crystal structure. Room temperature Hall measurements reveal that the as-grown multilayer exhibits p-type conductivity with a very low resistivity of $0.052\;\omega{cm}$, a high carrier concentration of $6.2X10^{19}\;cm^{-3}$ and a Hall mobility of $1.8\;cm^2/Vs$. We also observed a clear decrease of the resistivity in samples after low temperature annealing.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • Kim, Ji-Min;Yang, U-Seok;O, Yun-Jeong;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

Growth and optical properties of undoped and Co-doped CdS single crystals (CdS 및 CdS:Co2+ 단결정의 성장과 광학적 특성)

  • Oh, Gum-kon;Kim, Nam-oh;Kim, Hyung-gon;Hyun, Seung-cheol;Park, hjung;Oh, Seok-kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • CdS and $CdS:Co^{2+}$ single crystals were grown by CTR method using iodine as transport material. The grown single crystals have defect chalcopyrite structure with direct band gap. The optical energy band gap was decreased according to add of Co-impurity. We can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

The Structural-Dependent Characteristics of Rashba Spin Transports in In0.5Ga0.5As/In0.5Al0.5As Heterojunctions

  • Choi, Hyon-Kwang;Hwang, Sook-Hyun;Jeon, Min-Hyon;Yamda, Syoji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.140-143
    • /
    • 2011
  • The growth and characterization of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ narrow-gap inverted high electron mobility transistor structures, developed as a candidate material for spin-injection devices, are presented in this study. We have grown samples possessing surface $In_{0.5}Ga_{0.5}As$ channels of different thicknesses (30 nm and 60 nm) both with and without a thin 3 nm $In_{0.5}Ga_{0.5}As$ cap layer by using molecular beam epitaxy. We then investigated the in-plane transport properties as well as the Rashba spin-orbit coupling constant of the two-dimensional electron gas confined at the heterojunction interface.