Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.1.010

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties  

Park, Nam-Gyu (School of Chemical Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.1, 2010 , pp. 10-18 More about this Journal
Abstract
Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.
Keywords
Dye sensitized; Solar cell; Nano structure; Panchromatic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Wang, J. -E. Moser, and M. Gratzel, ‘Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells’ J. Phys. Chem. B, 109, 14945 (2005).   DOI
2 M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, ‘Determination of parameters of electron transport in dyesensitized solar cells using electrochemical impedance spectroscopy’ J. Phys. Chem. B, 110, 13872 (2006).   DOI
3 A. Usami, ‘Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells’ Sol. Energy Mater. Sol. Cells, 64, 73 (2000).   DOI
4 J. Ferber and J. Luther, ‘Computer simulations of light scattering and absorption in dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 54, 265 (1998).   DOI   ScienceOn
5 A. Usami, ‘Rigorous solutions of light scattering of neighboring $TiO_2$ particles in nanocrystalline films’ Solar Energy Mater. Sol. Cells, 59, 163 (1999).   DOI
6 W. E. Vargas and G. A. Niklasson, ‘Optical properties of nano-structured dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 69, 147 (2001).   DOI
7 H. -J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N.-G. Park, ‘Size-dependent scattering efficiency in dye-sensitized solar cell’ Inorg. Chim. Acta, 361, 677 (2008).   DOI
8 S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, ‘Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells’ Chem. Commun., 15, 2011 (2005).
9 R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, ‘Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions’ Electrochim. Acta, 47, 4213 (2002).   DOI
10 K. Lee, S. W. Park, M. J. Ko, K. Kim, and N. -G. Park, ‘Selective positioning of organic dyes in a mesoporous inorganic oxide film’ Nature Mater., 8, 665 (2009).   DOI
11 F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, ‘Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy’ Sol. Energy Mater. Sol. Cells, 87, 117 (2005).   DOI
12 K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, ‘InfluenInflthe percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells’ J. Phys. Chem. B, 107, 7759 (2003).   DOI
13 S. Ito, T. Kitamura, Y. Wada, and S. Yanagida, ‘Facile fabrication of mesoporous $TiO_2$ electrodes for dye solar cells: chemical modification and repetitive coating’ Sol. Energy Mater. Sol. Cells, 76, 3 (2003).   DOI
14 J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, ‘Recombination and transport processes in dye-sensitized solar cells investigated under working conditions’ J. Phys. Chem. B, 110, 17715 (2006).   DOI
15 S. Ito, S. M. Zakeerudiin, R. Humphry-Baker, P. Liska, P. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, ‘High-efficiency organicdye-sensitized solar cells controlled by nanocrystalline-$TiO_2$ electrode thickness’ Adv. Mater., 18, 1202 (2006).   DOI
16 S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, ‘Influence of scattering layers on efficiency of dye-sensitized solar cells’ Sol. Energy Mater. Sol. Cells, 90, 1176 (2006).   DOI
17 J. van de Lagemaat, N. -G. Park, and A. J. Frank, ‘Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline $TiO_2$ solar cells: A study by electrical impedance and optical modulation techniques’ J. Phys. Chem. B, 104, 2044 (2000).   DOI
18 A. Usami, ‘Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell’ Chem. Phys. Lett., 277, 105 (1997).   DOI   ScienceOn
19 W. E. Vargas, ‘Optimization of the diffuse reflectance of pigmented coatings taking into account multiple scattering’ J. Appl. Phys., 88, 4079 (2000).   DOI
20 Z. -S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, ‘Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell’ Coord. Chem. Rev., 248, 1381 (2004).   DOI
21 D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, and I. Riess, ‘Nature of photovoltaic action in dye-sensitized solar cells’ J. Phys. Chem. B, 104, 2053 (2000).   DOI
22 C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, ‘Nanocrystalline titanium oxide electrodes for photovoltaic applications’ J. Am. Ceram., Soc., 80, 3157 (1997).   DOI
23 N. -G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, ‘Dye-sensitized $TiO_2$ solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of $TiCl_4$’ J. Phys. Chem. B, 103, 3308 (1999).   DOI
24 J. Nelson, ‘Continuous-time random-walk model of electron transport in nanocrystalline $TiO_2$ electrodes’ Phys. Rev. B, 59, 15374 (1999).   DOI
25 N.-G. Park, J. van de Lagemaat and A. J. Frank, ‘Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells’ J. Phys. Chem. B, 104, 8989 (2000).   DOI
26 P. E. de Jongh and D. Vanmaekelbergh, ‘Investigation of the electronic transport properties of nanocrystalline particulate $TiO_2$ electrodes by intensity-modulated photocurrent spectroscopy’ J. Phys. Chem. B, 101, 2716 (1997).   DOI
27 N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, ‘Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous $TiO_2$’ J. Phys. Chem. B, 104, 3930 (2000).   DOI
28 http://en.wikipedia.org/wiki/Richard_Smalley.
29 B. O’Regan and M. Gratzel, ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films’ Nature, 353, 737 (1991).   DOI
30 M. Gratzel, ‘Solar energy conversion by dye-sensitized photovoltaic cells’ Inorg. Chem., 44, 6841 (2005).   DOI
31 Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, ‘Dye-Sensitized solar cells with conversion efficiency of 11.1%’ Jpn. J. Appl. Phys. Part 2, 45, L638 (2006).   DOI
32 H. -J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. -G. Park, ‘Nano-embossed hollow spherical $TiO_2$ as bifunctional material for high-efficiency dye-sensitized solar cells’ Adv. Mater., 20, 195, (2008).   DOI
33 N. -G. Park and K. Kim, ‘Transparent solar cells based on dye-sensitized nanocrystalline semiconductors’ Phys. Stat. Sol. (a), 205, 1895 (2008).   DOI