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Abstract Based on quantum transport theory, we in-

vestigated theoretically the magnetic field dependence 

of the quantum optical transition of quasi 2-dimen-

sional Landau splitting system, in CdS  and ZnO   

Through the analysis of the current work, we found the 

increasing properties of the cyclotron resonance line-

profiles (CRLPs) which show the absorption power 

and the cyclotron resonance line-widths (CRLWs) 

with the magnetic field in CdS  and ZnO   We also 

found that that CRLWs, 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of CdS 

<  𝛾𝑡𝑜𝑡𝑎𝑙(B)  of ZnO  in the magnetic field region 

𝐵 < 15 Tesla  

 

Keywords Cyclotron resonance, quantum transport 

theory, CdS and ZnO, equilibrium average projection 

scheme, scattering factor, absorption power 

 

 

Introduction 

 

The study of cyclotron resonance (CR) has been 

known to be a good tool for investigating the transport 

behavior of electrons in low-dimensional resonant sys-

tem 1 We use the projected Liouville equation method 

with the equilibrium average projection scheme 

(EAPS)  The merit of using EAPS is that the absorp-

tion power formula (line-profiles) and the scattering 

factor function (line-widths) can be obtained in a one-

step process by expanding the quantum transport the-

ory 2-7 In the previous work,8-10 we applied the EAPS 

theory in Ge and Si, since there are abundant exper-

imental dates in non-confining potential systems  We 

compared our results of numerical calculations of the 

EAPS theory with existing experimental data and 

showed a good agreement between them 11 However, 

it was restricted for non-confining potential systems 

with the extremely weak coupling (EWC) approxima-

tion  Hence, it is important to obtain an explicit ex-

pression of the CRLPs for a given confining potential 

system on the basis of a theoretical formulation  We 

suggested a more precise procedure of expansion and 

application of EAPS in low-dimensional electron sys-

tems with the moderately weak coupling (MWC) ap-

proximation  In the MWC scheme, the distribution 

components can provide an adequate explanation of 

the quantum transition processes 12 Through the nu-

merical calculation of the theoretical result, we inves-

tigate the optical transition which show the absorption 

power and the scattering factor, which show the scat-

tering effect in the electron-piezoelectric phonon inter-

action system  Finally, we shall be devoted to some 

discussion and draw conclusions  

 

 

Theory 

 

When a static magnetic field 𝐵⃗ = 𝐵𝑧̂ is applied to an 
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electron system, the single electron energy state is 

quantized to the Landau levels  We select a system of 

electrons confined in an infinite square well potential 

between 𝑧 = 0 and 𝑧 = 𝐿𝑧 in the 𝑧 −direction  We 

use the eigenvalue and eigenstate of Ref [8] of the 

square well potential system  We suppose that an os-

cillatory electric field 𝐸(𝑡) = 𝐸0 exp( 𝑖𝜔𝑡)  is ap-

plied along the 𝑧 − axis, which gives the absorption 

power delivered to the system as  

 

𝑃(𝜔) =
𝐸0

2

2
Re{ 𝜎(𝜔)}                                                 (1) 

 

where “Re” denotes the real component and 𝜎(𝜔) is 

the optical conductivity tensor that is the coefficient of 

the current formula  Here the absorption power repre-

sents the optical cyclotron resonance line-profiles 

(CRLPs), and the scattering factor function represents 

the optical cyclotron resonance line-widths (CRLWs)  

We consider the electron-piezoelectric phonon inter-

acting system and then we have the Hamiltonian of the 

system as below,13 

 

𝐻𝑠 = 𝐻𝑒 + 𝐻𝑝 + 𝑉  

𝐻𝑒 = ∑⟨𝛼|ℎ𝑒|𝛼⟩

𝛼

𝑎𝛼
†𝑎𝛼  

𝐻𝑝 = ∑ ℏ𝜔𝑞

𝑞

𝑏𝑞
†𝑏𝑞 

𝑉 = ∑

𝑞

∑𝐶𝑘,𝜆(𝑞)𝑎𝑘
†𝑎𝜆(𝑏𝑞 + 𝑏−𝑞

† )

𝑘,𝜆

.                  (2) 

 

Where, 𝐻𝑒   is the electron Hamiltonian, 𝐻𝑝  is the 

phonon Hamiltonian and 𝑉 is the electron-piezoelec-

tric phonon (or impurity) interaction Hamiltonian  The 

𝑏𝑞
†(𝑏𝑞) is the creation operator (annihilation operator) 

of boson particle, and 𝑞  is phonon (or impurity) wave 

vector  The interaction Hamiltonian of electron-piezo-

electric phonon (or impurity) interacting system is 𝑉, 

where the coupling matrix element of electron-phonon 

interaction 𝐶𝑘,𝜆(𝑞)  is 𝐶𝑘,𝜆(𝑞) ≡ |𝑉𝑞|
2
⟨𝑘|exp( 𝑖𝑞 ⋅

𝑟 )|𝜆⟩, 𝑟  is the position vector of electron  The elec-

tron-piezoelectric phonon interaction parameter 𝑉𝑞  is 

given by  

 

|𝑉𝑞|
2
=

Κ̄
2
ℏ𝑣𝑠𝑒

2

2𝜒𝜀0Ω

1

𝑞
 .                                                     (3) 

 

Here the Κ̄ is the electrochemical constant, the 𝑣𝑠 is 

the sound velocity in solid, the Ω is the volume of the 

system, the 𝜀0 is the permittivity of free space and the 

𝜒 is the dielectric constant  For the optical quantum 

transition system under a circularly polarized external 

field, the current operator 𝐽± are defined 

 

𝐽+ = ∑𝑗𝛼
+

𝛼

𝑎𝛼+1
† 𝑎𝛼  and   𝐽− = ∑(𝑗𝛽

+)∗

𝛽

𝑎𝛽𝑎𝛽+1 

 

where 𝐽± ≡ 𝐽𝑥 ± 𝑖𝐽𝑦 are two components of the sin-

gle electron current operator 𝐽  Using Landau gauge, 

the magnetic field 𝐵 is perpendicular to the barriers 

of the well, and the distance between the barriers, 

which are assumed to be infinitely high  Since the 

wave function vanish at 𝑧 = 0  and 𝑧 = 𝐿𝑧 , the ei-

genfunctions Ψ𝛼,𝑘𝑦𝛼,𝑘𝑧,𝛼
  and the corresponding 

𝐸𝛼,𝑘𝑧𝛼
 as 

 

Ψ𝛼,𝑘𝑦𝛼,𝑘𝑧,𝛼
(𝑥, 𝑦, 𝑧) = ⟨𝑥 |𝑁𝛼 , 𝑘𝑦𝛼 , 𝑘𝑧,𝛼⟩ 

                                  =
1

√𝐿𝑦𝐿𝑧

exp[𝑖(𝑘𝑦𝛼𝑦 + 𝑘𝑧𝛼𝑧)] 

                                      × Φ𝑁𝛼
(𝑥 − 𝑥𝛼) sin(𝑘𝑧𝑧) 

Φ𝑁𝛼
(𝑥) =

1

√2𝑁𝛼𝑁𝛼! 𝑟0√𝜋

exp [−
(𝑥 − 𝑥𝛼)2

2𝑟0
2 ] 

                  × 𝐻𝛼 (
𝑥 − 𝑥𝛼

𝑟0
) 

𝐸𝛼,𝑘𝑧𝛼
= (𝑁𝛼 +

1

2
) ℏ𝜔𝑐 + 𝑛𝛼

2𝜀0, 

 

where 

 

𝜀0 =
ℏ
2𝜋2

2𝑚∗𝐿𝑧𝛼
2

     𝑁𝛼 = 0,1,2,3, …     

𝑛𝛼 = 1,2,3, … = 𝑁𝛼 + 1,                                          (4) 
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here 𝑟0 = (ℏ/𝑚𝜔𝑐)
1/2 is the radius of cyclotron mo-

tion, 𝐻𝛼(𝑥) is the Hermite polynomials  From the ei-

genstate, we can obtain the matrix element of the cur-

rent as 

 

𝑗𝛼
+ ≡ ⟨𝛼 + 1|𝑗+|𝛼⟩

= −𝑖𝑒 [
2(𝑁𝛼 + 1)ℏ𝜔

𝑚∗
]

1
2

,                                            (5) 

 

here 𝑚∗ is the effective mass of electron  In the pre-

vious work,8 we derived the current in the 𝜔 space as 

 

𝐽−(𝜔) = Re{ 𝜎±(𝜔)}𝐸+(𝜔),                                     (6) 

 

where the conductivity tensor is 

 

𝜎±(𝜔) =
(−

𝑖
ℏ
) Λ∓

𝑖𝜔 − 𝐴∓ + 𝑄∓(𝜔)
                                    (7) 

 

The scattering factor function is  

 

𝑄∓(𝜔) ≡
𝑖

ℏΛ∓

𝑇𝑟{𝐽−𝐿𝑠𝐺∓
′ (𝜔)𝑃∓

′ 𝐿𝑠𝐿
+𝜌𝑠},             (8) 

 

and the propagator is 

 

𝐺∓
′ (𝜔) ≡

1

ℏ𝜔̄ − 𝑃∓
′ 𝐿𝑠

 ,                                               (9) 

 

here 𝜌𝑠 is the equilibrium density matrix, 𝜔̄ = 𝜔 +

𝑖𝜂, and the 𝜂 is an infinitesimal value  The equilib-

rium part of Liouville operators implies 𝐿𝑠𝑋 ≡

[𝐻𝑠 , 𝑋] and the non-equilibrium part of response cur-

rent Liouville operator implies 𝐿+𝑋 = (−𝑖/𝜔)[𝐽+, 𝑋] 

for an arbitrary operator 𝑋  We expand the propagator 

with the conventional series expansion representation  

 

𝐺∓
′ (𝜔) ≡

1

ℏ𝜔̄ − 𝑃∓
′ 𝐿𝑠

= 𝐺𝑑
′ ∑[𝑃∓

′ 𝐿𝑣𝐺𝑑
′ ]

∞

𝑛=0

𝑛

 

𝐺𝑑
′ (𝜔) ≡

1

ℏ𝜔̄ − 𝑃∓
′ 𝐿𝑑

= 𝐺𝑑 ∑[𝑃∓𝐿𝑑𝐺𝑑]

∞

𝑛=0

𝑛

 

𝐺𝑑(𝜔) ≡
1

ℏ𝜔̄ − 𝐿𝑑

                                                    (10) 

 

Using the properties of projection operator we obtain 

the relations, 

 

(
𝑖

ℏΛ∓
(𝛼)

) ⟨𝑇𝑟{𝐽−𝑋𝑃∓
′ 𝐿𝑑𝐿

+𝜌𝑠}⟩𝐵 

    = (
𝑖

ℏΛ∓
(𝛼)

) ⟨𝑇𝑟{𝐽−𝑋𝐿𝑑𝐿
+𝜌𝑠}⟩𝐵 

    − (
𝑖

ℏΛ∓
(𝛼)2

) ⟨𝑇𝑟{𝐽−𝑋𝐿+𝜌𝑠}⟩𝐵⟨𝑇𝑟{𝐽−𝐿𝑑𝐿
+𝜌𝑠}⟩𝐵 = 0 

(
𝑖

ℏΛ∓
(𝛼)

) ⟨𝑇𝑟{𝐽−𝐿𝑑𝑃∓
′ 𝑋𝐿+𝜌𝑠}⟩𝐵 

     = (
𝑖

ℏΛ∓
(𝛼)

) ⟨𝑇𝑟{𝐽−𝐿𝑑𝑋𝐿+𝜌𝑠}⟩𝐵 

     − (
𝑖

ℏΛ∓
(𝛼)2

) ⟨𝑇𝑟{𝐽−𝐿𝑑𝐿
+𝜌𝑠}⟩𝐵⟨𝑇𝑟{𝐽−𝑋𝐿+𝜌𝑠}⟩𝐵

= 0                                              (11) 

 

Since the average of odd background terms are zero, 

we use the useful relation as below 

 

⟨𝑇𝑟{𝑌𝑃′𝐿𝑣𝐿
+𝜌𝑠}⟩𝐵 = ⟨𝑇𝑟{𝑌𝐿𝑣𝐿

+𝜌𝑠}⟩𝐵 

𝑇𝑟{𝑅𝜇𝐿1𝐿2𝐿3. . . . . . 𝐿𝑛𝐿
+𝜌𝑠}

= (−1)𝑛+1⟨𝐿+𝐿𝑛 . . . . . . 𝐿3𝐿2𝐿1𝑅𝜇⟩𝐵
 ,                   (12) 

 

here ⟨. . . . . . ⟩𝐵 is the ensemble average of background 

particle states (for example, phonon state)  ⟨. . . . . . ⟩ is 

the ensemble average of electron states and back-

ground particle states  Then we obtain the simple scat-

tering factor function as 

 

𝑄∓(𝜔) ≡
𝑖

ℏ𝛬∓

⟨𝐿+𝐿𝑣𝐺𝑑𝐿𝑣𝐽
−⟩                              (13) 

 

We obtain the matrix elements of dynamic variable 
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and through the continuous approximation of the 

quantum integral, the absorption power formula is ob-

tained finally as below 

 

𝑃(𝜔) ∝ (
𝑒2𝜔𝑐

2

𝜋2ℏ𝜔
) 

     

×
𝛾𝑡𝑜𝑡𝑎𝑙(𝜔) ∑𝑁𝛼

∫ 𝑑𝑘𝑧𝛼

∞

−∞
(𝑁𝛼 + 1)(𝑓𝛼 − 𝑓𝛼+1)

(𝜔 − 𝜔0)
2 + 𝛾𝑡𝑜𝑡𝑎𝑙

2 (𝜔)
, 

(14) 

 

and the CRLWs 𝛾∓(𝜔) in integration form as below 

 

𝛾𝑡𝑜𝑡𝑎𝑙(𝜔) ≡ Re{𝑄∓(𝜔)} ≡ ∑𝛾𝛼,𝛽
∓

∓

= (
−Ω

4𝜋ℏ
2𝑣𝑠

) 

   ×
∑∓ ∑𝑁𝛼=0 ∑𝑁𝛽=0 ∫

∞

−∞
∫ 𝑌𝛼,𝛽

∓ 𝑑𝑘𝑧𝛼
𝑑𝑞𝑧

∞

−∞

∑𝑁𝛼=0 ∫ 𝑑𝑘𝑧𝛼
(𝑁𝛼 + 1)(𝑓𝛼+1 − 𝑓𝛼)

∞

−∞

, 

(15) 

 

where the integrand-factor is 

 

𝑌𝛼,𝛽
∓ ≡ 𝑌𝛼,𝛽

𝐴∓ + 𝑌𝛼,𝛽
𝐵∓ + 𝑌𝛼,𝛽

𝐶∓ + 𝑌𝛼,𝛽
𝐷∓ + 𝑌𝛼,𝛽

𝐸∓ + 𝑌𝛼,𝛽
𝐹∓, 

(16) 

 

and 

 

𝑌𝛼,𝛽
𝐴∓ ≡ 𝑆𝛽,𝛼+1

∓ ( 𝛽,𝛼
𝛼,𝛽

) (𝑁𝛼 + 1)(𝑓𝛼+1 − 𝑓𝛼) 

             × [𝑁𝑞
± + (1 − 𝐹𝛽

±)] 

𝑌𝛼,𝛽
𝐵∓ ≡ −𝑆𝛽,𝛼+1

∓ ( 𝛽+1,𝛼+1
𝛼,𝛽

)√(𝑁𝛼 + 1)(𝑁𝛽 + 1) 

             × (𝑓𝛽+1
± − 𝑓𝛽

±)[𝑁𝑞
± ∓ 𝑓𝛼+1] 

𝑌𝛼,𝛽
𝐶∓ ≡ −𝑈𝛼,𝛽+1

∓ ( 𝛼+1,𝛽+1
𝛽,𝛼

)√(𝑁𝛼 + 1)(𝑁𝛽 + 1) 

             × (𝑓𝛽+1
± − 𝑓𝛽

±)[𝑁𝑞
± ± (1 − 𝑓𝛽+1

∓ )] 

𝑌𝛼,𝛽
𝐷∓ ≡ 𝑈𝛼,𝛽

∓ ( 𝛼+1,𝛽
𝛽,𝛼+1

) (𝑁𝛼 + 1)(𝑓𝛼+1 − 𝑓𝛼)[𝑁𝑞
±𝑓𝛽

∓] 

𝑌𝛼,𝛽
𝐸∓ ≡ − [𝑊1

− ( 𝛼,𝛽
𝛽,𝛼

) + 𝑊1
− ( 𝛼+1,𝛽+1

𝛽,𝛼
)

− 𝑊1
+ ( 𝛼,𝛽

𝛽,𝛼
) − 𝑊1

+ ( 𝛼+1,𝛽+1
𝛽,𝛼

)] 

                                 × (𝑁𝛼 + 1)(𝑓𝛼+1 − 𝑓𝛼) 

𝑌𝛼,𝛽
𝐹∓ ≡ − [𝑍− ( 𝛽+1,𝛼+1

𝛼,𝛽
) (𝑓𝛽+1

− + 𝑓𝛽
−)

+ 𝑍+ ( 𝛽+1,𝛼+1
𝛼,𝛽

) (𝑓𝛽+1
− + 𝑓𝛽

−)] 

              × √(𝑁𝛼 + 1)(𝑁𝛽 + 1)(𝑓𝛼+1 + 𝑓𝛼),          (17) 

 

here terms of electron-phonon interacting parts are 

 

𝑆𝛽,𝛼
∓ ( 𝜇,𝜈

𝑘,𝜂
)

≡ [𝑉 (𝑞𝑧 , 𝑞⊥1
∓𝛽𝛼

)
2
√(𝑞⊥1

∓𝛽𝛼
)
2

+ 𝑞𝑧
2𝐾𝜇,𝜈

𝑘,𝜂
(
𝑟2

2
(𝑞⊥1

∓𝛽𝛼
)
2

)] 

+[𝑉 (𝑞𝑧 , 𝑞⊥2
∓𝛽𝛼

)
2
√(𝑞⊥2

∓𝛽𝛼
)
2

+ 𝑞𝑧
2𝐾𝜇,𝜈

𝑘,𝜂
(
𝑟2

2
(𝑞⊥2

∓𝛽𝛼
)
2

)] 

𝑈𝛼,𝛽
∓ ( 𝜇,𝜈

𝑘,𝜂
)

≡ [𝑉 (𝑞𝑧 , 𝑞⊥3
∓𝛼𝛽

)
2
√(𝑞⊥3

∓𝛼𝛽
)
2

+ 𝑞𝑧
2𝐾𝜇,𝜈

𝑘,𝜂
(
𝑟2

2
(𝑞⊥3

∓𝛼𝛽
)
2

)] 

+[𝑉 (𝑞𝑧 , 𝑞⊥4
∓𝛼𝛽

)
2
√(𝑞⊥4

∓𝛼𝛽
)
2

+ 𝑞𝑧
2𝐾𝜇,𝜈

𝑘,𝜂
(
𝑟2

2
(𝑞⊥4

∓𝛼𝛽
)
2

)] 

𝑊𝑛
∓( 𝜇,𝜈

𝑘,𝜂
)

≡ [𝑉(𝑞𝑧, 𝑞⊥5
∓𝑛)

2
√(𝑞⊥5

∓𝑛)
2
+ 𝑞𝑧

2𝐾𝜇,𝜈
𝑘,𝜂

(
𝑟2

2
(𝑞⊥5

∓𝑛)
2
)] 

+[𝑉(𝑞𝑧 , 𝑞⊥6
∓𝑛)

2
√(𝑞⊥6

∓𝑛)
2
+ 𝑞𝑧

2𝐾𝜇,𝜈
𝑘,𝜂

(
𝑟2

2
(𝑞⊥6

∓𝑛)
2
)] 

𝑍∓( 𝜇,𝜈
𝑘,𝜂

)

≡ [𝑉(𝑞𝑧, 𝑞⊥7
∓ )

2
√(𝑞⊥7

∓ )
2
+ 𝑞𝑧

2𝐾𝜇,𝜈
𝑘,𝜂

(
𝑟2

2
(𝑞⊥7

∓ )
2
)] 

+[𝑉(𝑞𝑧 , 𝑞⊥8
∓ )

2
√(𝑞⊥8

∓ )
2
+ 𝑞𝑧

2𝐾𝜇,𝜈
𝑘,𝜂

(
𝑟2

2
(𝑞⊥8

∓ )
2
)] . 

(18) 

 

The Fermi-Dirac distribution functions are 

 

𝑓𝛼 =
1

𝑒𝜀𝛼/𝑘𝐵𝑇 + 1
      𝑓𝛽

± =
1

𝑒
𝜀𝛽
±/𝑘𝐵𝑇

+ 1
,               (19) 
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where eigenvalues are 

 

𝜀𝛼 = [(𝑁𝛼 +
1

2
) ℏ𝜔𝑐 +

ℏ
2𝑘𝑧𝛼

2

2𝑚∗
+ (𝜀𝑐 − 𝜀𝐹)] 

𝜀𝛽
± = [(𝑁𝛽 +

1

2
) ℏ𝜔𝑐 +

ℏ
2𝑘𝑧𝛽

2

2𝑚∗

+ (𝜀𝑐 − 𝜀𝐹)] 𝛿𝑘𝛽,𝑘𝛽±𝑞𝑦𝑧
 

= [(𝑁𝛽 +
1

2
) ℏ𝜔𝑐 +

ℏ
2(𝑘𝑧𝛼 ± 𝑞𝑧)

2

2𝑚∗
+ (𝜀𝑐 − 𝜀𝐹)] , 

(20) 

 

where 𝜔𝑐 is the cyclotron resonance frequency, 𝑘𝑧𝛼 

is the 𝑧 component of electron wave vector and the 

energy are as below 

 

𝜀𝑐 − 𝜀𝐹(𝑇) = 0.5 [𝜀𝑔(𝑇) −
𝑘𝑇

𝑇 − 𝜉
−

3

4
𝑘𝐵𝑇 ln (

𝑚̄

𝑚∗
)] , 

(21) 

 

where 𝜀𝑐  is the conduction band minimum energy, 

𝜀𝐹(𝑇) is the Fermi energy, 𝜀𝑔(𝑇) is the band gap en-

ergy at 𝑇, 𝑘 and 𝜉 are characteristic constant of the 

material, 𝑚̄ is the density of states effective mass of 

hole  Here the phonon energy is 

 

𝜀(𝑞, 𝑇) =
ℏ𝜔𝑞

𝑘𝐵𝑇
=

ℏ𝑣𝑠

𝑘𝐵𝑇
√(𝑞⊥𝑛

∓𝑘𝜆)
2
+ 𝑞𝑧

2.                  (22) 

 

If 𝑁𝛼 < 𝑁𝛽 and 𝑁𝑘 < 𝑁𝜆, the K-matrix is 

 

𝐾𝑘,𝜆
𝛼,𝛽

≡ √
𝑁𝛼!

𝑁𝛽!
√

𝑁𝑘!

𝑁𝜆!
(√𝑡)

𝑁𝛽−𝑁𝛼
(√𝑡)

𝑁𝜆−𝑁𝑘
 

              × exp( − 𝑡)𝐿𝑁𝛼

𝑁𝛽−𝑁𝛼
(𝑡)𝐿𝑁𝑘

𝑁𝜆−𝑁𝑘(𝑡),             (23) 

 

where the Legendre function is 

 

𝐿𝑛
𝑚(𝑡) =

1

(𝑛!)
exp( 𝑡)

1

𝑡𝑚
(
𝑑𝑛

𝑑𝑡𝑛
) [𝑡𝑛+𝑚 exp( − 𝑡)] 

𝑡 ≡
𝑟0

2(𝑞𝑥
2 + 𝑞𝑦

2)

2
.                                                        (24) 

 

The result can be applied directly to numerical analy-

sis through wave vector integration  

 

 

Result and discussion 

 

Through the numerical calculation of Eq  (14) and Eq  

(15), we analyze absorption power and line-widths in 

CdS and ZnO  It is well known that the piezoelectric-

potential scattering is dominant for pure CdS  and 

ZnO  We use 𝑚∗ = 0.19𝑚0 and 𝑚̄ = 0.7𝑚0 which 

are the effective masses of constants of CdS are 𝜌 =

4.82 × 103 kg/m3 , 𝑣𝑠𝑙 = 4.28 × 103 m/s  is the 

longitudinal sound velocity, 𝑣𝑠𝑡 = 1.81 × 103 m/s 

is the transverse sound velocity, 𝑘 = 8.58 ×

10−4 eV/K , 𝜉 = 235 K  and |𝐾|2 = 2.98 × 10−2   

The speed of sound 𝑣𝑠 in Eq  (22) shall be replaced 

by the average value 𝑣𝑠  of 𝑣𝑠𝑙   and 𝑣𝑠𝑡 , as 𝑣̄𝑠 =

(𝑣𝑠𝑙 + 𝑣𝑠𝑡)/2 and the energy gap 𝜀𝑔(𝑇) replaced by 

𝜀𝑔̄ = 2.56 eV  in approximation by noting that the 

variation against the temperature is very small  More 

accurate value of 𝜀𝑔(𝑇) can be obtained by Eq  (21) 

if the characteristic constants 𝑘 and 𝜉 are available  

We choose 𝜀0 = 8.854 × 10−12 c2/Nm2  For ZnO, 

Figure 1. Magnetic field dependence of the CRLWs, 

𝛾𝑡𝑜𝑡𝑎𝑙(B) of CdS at T = 50, 120 and 210 K  
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we have 𝑚∗ = 0.27𝑚0  and 𝑚̄ = 1.8𝑚0 , 𝜌 =

4.09 × 103 kg/m3 , 𝑣𝑠𝑙 = 5.61 × 103 m/s , 𝑣𝑠𝑡 =

2.98 × 103 m/s , 𝜀𝑔̄ = 3.42 eV , 𝑘 = 17.88 ×

10−4 eV/K and 𝜉 = 204 K  In Fig  1, it is shown 

that the comparison of the magnetic field dependence 

of CRLWs, 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of CdS , and 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of 

ZnO in Fig  2, at T = 50, 120, 210 K  Our results re-

veal that 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of CdS  <𝛾𝑡𝑜𝑡𝑎𝑙(B)  of ZnO  in 

the magnetic field region 𝐵 < 15  Tesla  The mag-

netic field dependence of CRLWs, 𝛾𝑡𝑜𝑡𝑎𝑙(B) of CdS 

and 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of ZnO  at T = 50 , 120, 210 K is 

plotted in log scale  As shown, 𝛾𝑡𝑜𝑡𝑎𝑙(B) of CdS in-

creases as the magnetic field increases, and 𝛾𝑡𝑜𝑡𝑎𝑙(B) 

of ZnO  increases as the magnetic field increases  

However, 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of ZnO  decreases when the 

magnetic field in the high magnetic field is larger than 

𝐵 = 17 Tesla at T = 50, 120, 210 K  We can read the 

relative frequency dependence of the absorption 

power, 𝑃(𝐵) of CdS (in Fig  3) and ZnO (in Fig  4) 

with 𝜆 = 119 𝜇𝑚 at T = 50, 120, 210 K  The anal-

ysis of the relative frequency dependence of the ab-

sorption power represents the magnetic field depend-

ent property of the absorption power given for an ex-

ternal field wavelength and the conditions of the sys-

tem  The broadening effects near the resonance peaks 

for various external fields appeared  The results indi-

cate that the EAPS is a useful method to explain the 

resonant phenomena based on the quantum transition 

and scattering effect in a microscopic view  

 

 

Conclusions 

 

As a conclusion, the relatively easy approach to the 

analysis of the magnetic field dependence of CRLPs 

and CRLWs is one of the merits of our EAPS theory  

We analyzed the absorption power 𝑃(𝐵)  of CdS 

and we saw broadening effect of absorption power 

𝑃(𝐵) increases as magnetic field increase  This result 

implies that the scattering effect of the phonon in-

crease as magnetic field increase  We also analyzed 

Figure 2. Magnetic field dependence of the 

CRLWs, 𝛾𝑡𝑜𝑡𝑎𝑙(B)  of ZnO  at T = 50 , 120 and 

210 K  

Figure 3. The relative frequency dependence of the absorp-

tion power, 𝑃(𝐵)  of CdS  with 𝜆 = 119⬚𝜇𝑚  at T =
50, 120 and 210 K  

Figure 4. The relative frequency dependence of the 

absorption power, 𝑃(𝐵)  of ZnO  with 𝜆 = 119⬚𝜇𝑚  at 

T = 50, 120 and 210 K  
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similarly the thermal properties of ZnO  The results of 

this work will help to analyze experimental the scat-

tering mechanism in the electron-piezoelectric phonon 

interacting materials  
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