• 제목/요약/키워드: electron transport layer

검색결과 273건 처리시간 0.029초

PBD를 Hole Blocking Layer로 이용한 적색발광의 EL 소자 제작에 관한 연구 (The study on Red device using PBD as a Hole Blocking Layer)

  • 강민웅;김종성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.499-501
    • /
    • 2002
  • 본 연구에서는 ETL층으로 널리 알려져 있는 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl) -1.3,4oxadiazole)를 HBL(Hole-blocking layer) 물질로 이용 하고 Nile red를 사용하여 적색 발광의 EL(electroluminescence) 소자를 제작 평가하였다. 일반적인 유기 EL 소자의 구조인 Anode/HTL(Hole Transport Layer)/ETL(Electron Transport Layer)/Cathode로 이루어져 있다. 여기에 HTL과 ETL사이에 HBL를 추가하여 EL 소자의 성능을 향상 시킬 수 있으면, 이러한 구조의 최종 소자를 제작 EML(emitting layer; Nile red)의 두께 및 임계전압을 달리 하여 소자 의 특성을 평가 연구 하였다.

  • PDF

Growth and Structural Characterization of Single Layer Dichalcogenide $MoS_2$

  • Hwang, Jae-Seok;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.575-575
    • /
    • 2012
  • Synthesis of novel two dimensional materials has gained tremendous attention recently as they are considered as alternative materials for replacing graphene that suffers from a lack of bandgap, a property that is essential for many applications. Single layer molybdenum disulfide ($MoS_2$) has a direct bandgap (1.8eV) that is promising for use in next-generation optoelectronics and energy harvesting devices. We have successfully grown high quality single layer $MoS_2$ by a facile vapor-solid transport route. As-grown single layer $MoS_2$ was carefully characterized by using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy and electrical transport measurement. The results indicate that a high quality single layer $MoS_2$ can be successfully grown on silicon substrate. This may open up great opportunities for the exploration of novel nanoelectronic devices.

  • PDF

Recent Progress in Flexible Perovskite Solar Cell Development

  • Ren, Xiaodong;Jung, Hyun Suk
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.325-336
    • /
    • 2018
  • Perovskite solar cells (PSCs) are a new class of photovoltaic devices, which have attracted significant attention due to their remarkable optoelectrical properties, including high absorption coefficients, high carrier mobilities, long carrier diffusion lengths, tunable bandgaps, low cost, and facile fabrication. PSCs have reached efficiencies of 22.70% and 18.36% on rigid fluorine-doped tin oxide and poly(ethylene terephthalate) substrates, respectively; these are comparable to those of single-crystal silicon and copper-indium-gallium-selenium solar cells. Over the past eight years, the photo conversion efficiency of PSCs has been significantly improved by device-architecture adjustments, and absorber and electron/hole transport layer optimization. Each layer is important for the performance of PSCs; hence, we discuss achievements in flexible perovskite solar cells (FPSCs), covering electron/hole-transport materials, electrode materials. We give a comprehensive overview of FPSCs and put forward suggestions for their further development.

Improved performance of n-type organic field-effect transistor with a non-conjugated polyelectrolyte layer

  • Park, Yu Jung;Cha, Myoung Joo;Lee, Jin Hee;Cho, Shinuk;Seo, Jung Hwa;Walker, Bright
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.151.2-151.2
    • /
    • 2016
  • We characterized the n-type organic field-effect transistors (OFETs) with non-conjugated polyelectrolytes (NPEs) interlayers as the electron injection layer. Novel NPEs with various ions (Cl-, Br-, I-) improved the electron mobility from $5.06{\times}10^{-3}$ to $2.10{\times}10^{-2}cm^2V^{-1}s^{-1}$ in OFETs based [6,6]-Phenyl-$C_{61}$-butyric acid methyl ester (PCBM) when $PEIEH^+I^-$ spin-cast from 0.6% solution was deposited onto the PCBM layer. Reduced electron injection barrier (${\phi}_e$) at NPE/metal electrode interface was induced by dipole formation and led to increase the electron injection and transport. These findings are important for understanding how NPEs function in devices, the improvement of device performance, and the design of new materials for use in optoelectronic devices.

  • PDF

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.

양자점 층의 미세구조 형상이 양자점 LED 전계 발광 특성에 미치는 효과 (Effect of Microstructure of Quantum Dot Layer on Electroluminescent Properties of Quantum Dot Light Emitting Devices)

  • 윤성룡;전민현;이전국
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.430-434
    • /
    • 2013
  • Quantum dots(QDs) with their tunable luminescence properties are uniquely suited for use as lumophores in light emitting device. We investigate the microstructural effect on the electroluminescence(EL). Here we report the use of inorganic semiconductors as robust charge transport layers, and demonstrate devices with light emission. We chose mechanically smooth and compositionally amorphous films to prevent electrical shorts. We grew semiconducting oxide films with low free-carrier concentrations to minimize quenching of the QD EL. The hole transport layer(HTL) and electron transport layer(ETL) were chosen to have carrier concentrations and energy-band offsets similar to the QDs so that electron and hole injection into the QD layer was balanced. For the ETL and the HTL, we selected a 40-nm-thick $ZnSnO_x$ with a resistivity of $10{\Omega}{\cdot}cm$, which show bright and uniform emission at a 10 V applied bias. Light emitting uniformity was improved by reducing the rpm of QD spin coating.At a QD concentration of 15.0 mg/mL, we observed bright and uniform electroluminescence at a 12 V applied bias. The significant decrease in QD luminescence can be attributed to the non-uniform QD layers. This suggests that we should control the interface between QD layers and charge transport layers to improve the electroluminescence.

PECCP LB 박막을 발광층으로 사용한 유기 발광 다이오드의 특성 (Characteristics of Organic Light-Emitting Diodes using PECCP Langmuir-Blodgett(LB) Film as an Emissive Layer)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Jong-Wook;Kim, Tae-Wan;Dou--Yol Kang
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.111-114
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have been attracted lots of interests in large-area light-emitting display. In this stuffy, an emissive layer was fabricated using Langmuir-Blodgett(LB) technique in organic light-emitting (OLEDs). This emissive organic material was synthesized and named PECCP[poly(3.6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] which has a strong electron donor group and an electron acceptor group in main chain repeated unit. This material has good solubility in common organic solvents such as chloroform. THF, etc, and has a good stability in air. The Langmuir-Blodgett(LB) technique has the advantage of precise control of the thickness down to the molecular scale, In particular, by varying the film thickness it is possible to investigate the metal/polymer interface. Optimum conditions for the LB film deposition are usually determined by investigating a relationship between a surface pressure $\pi$ and an effective are A occupied by one molecule on the subphase. The LB films were deposited on an indium-tin-oxide(ITO) glass at a surface pressure of 10 mN/m and dipping speed of 12 mm/min after spreading PECCP solution on distilled water surphase at room temperature, Cell structure was ITO/PECCP LB film/Alq$_3$/Al. We considered PECCP as a hole -transport layer inserted between the emissive layer and ITO. We also used Alq$_3$ as an emissive layer and an electron transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum and EL spectrum of the OLEDs.

  • PDF

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

Polyimide 터널 장벽을 이용한 Au/polyimide/유기 단분자막/Pb 구조에서 비탄성 전자 터널링에 관한 연구 (Inelastic Electron Tunneling in Au/polyimide/monolayer Organic Film/Pb Structures using a Polyimide Barrier)

  • 이호식;이원재;장경욱;최명규;이성일;김태완;;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.196-200
    • /
    • 2004
  • Using polyimide Langmuir-Blodgett(LB) films as a tunneling harrier, we fabricated Au/Polyimide/1-layer arachidic acid/Pb structure in order to investigate electron transport properties through a junction. It was found that 9-layer polyimide LB films function as a good tunneling harrier in a study of current-voltage(I-V) chararteristics. And several peaks originating in the vibrational modes of the constituent molecules of 1-layer arachidic acid LB films were clearly observed in d$^2$V/dI$^2$- V corves.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • 제10권2호
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.