References
- N. R. E. Laboratory, Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed on 09/04/2018.
-
C. Wang, L. Guan, D. Zhao, Y. Yu, C. R. Grice, Z. Song, R. A. Awni, J. Chen, J. Wang, X. Zhao, and Y. Yan, "Water Vapor Treatment of Low-Temperature Deposited
$SnO_2$ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells," ACS Energy Lett., 2 [9] 2118-24 (2017). https://doi.org/10.1021/acsenergylett.7b00644 - A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131 [17] 6050-51 (2009). https://doi.org/10.1021/ja809598r
- J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell," Nanoscale, 3 [10] 4088-93 (2011). https://doi.org/10.1039/c1nr10867k
- H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Sci. Rep., 2 591 (2012). https://doi.org/10.1038/srep00591
- M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, 338 [6107] 643-47 (2012). https://doi.org/10.1126/science.1228604
- M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition," Nature, 501 [7467] 395-98 (2013). https://doi.org/10.1038/nature12509
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells," Nat. Mater., 13 [9] 897-903 (2014). https://doi.org/10.1038/nmat4014
- M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells," Angew. Chem., Int. Ed. Engl., 53 [37] 9898-903 (2014). https://doi.org/10.1002/anie.201405334
- D. Y. Liu and T. L. Kelly, "Perovskite Solar Cells with A Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques," Nat. Photonics, 8 [2] 133-38 (2014). https://doi.org/10.1038/nphoton.2013.342
- N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Gratzel, "Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%," Science, 358 [6364] 768-71 (2017).
- W. Chen, Y. Z. Wu, Y. F. Yue, J. Liu, W. J. Zhang, X. D. Yang, H. Chen, E. B. Bi, I. Ashraful, M. Gratzel, and L. Y. Han, "Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers," Science, 350 [6263] 944-48 (2015). https://doi.org/10.1126/science.aad1015
- D. Yang, R. Yang, X. Ren, X. Zhu, Z. Yang, C. Li, and S. F. Liu, "Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport," Adv. Mater., 28 [26] 5206-13 (2016). https://doi.org/10.1002/adma.201600446
- P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. J. Lin, and A. K. Y. Jen, "Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells," Adv. Mater., 26 [22] 3748-54 (2014). https://doi.org/10.1002/adma.201400231
- H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, and Y. Yang, "Interface Engineering of Highly Efficient Perovskite Solar Cells," Science, 345 [6196] 542-46 (2014). https://doi.org/10.1126/science.1254050
-
J. X. Song, E. Q. Zheng, J. Bian, X. F. Wang, W. J. Tian, Y. Sanehira, and T. Miyasaka, "Low-Temperature
$SnO_2$ -Based Electron Selective Contact for Efficient and Stable Perovskite Solar Cells," J. Mater. Chem. A, 3 [20] 10837-44 (2015). https://doi.org/10.1039/C5TA01207D - W. Y. Nie, H. H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, "High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains," Science, 347 [6221] 522-25 (2015). https://doi.org/10.1126/science.aaa0472
- X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, "A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells," Science, 353 [6294] 58-62 (2016). https://doi.org/10.1126/science.aaf8060
- W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, "Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells," Science, 356 1376-79 (2017). https://doi.org/10.1126/science.aan2301
- B. Susrutha, L. Giribabu, and S. P. Singh, "Recent Advances in Flexible Perovskite Solar Cells," Chem. Commun., 51 [79] 14696-707 (2015). https://doi.org/10.1039/C5CC03666F
- A. Banerjee, T. Su, D. Beglau, G. Pietka, F. S. Liu, S. Almutawalli, J. Yang, and S. Guha, "High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate," IEEE J. Photovoltaics, 2 [2] 9-103 (2012).
- A. Banerjee, F. S. Liu, D. B., T. Su, G. Pietka, J. Yang, and S. Guha, "12.0% Efficiency on Large-Area, Encapsulated, Multijunction nc-Si:H-Based Solar Cells," IEEE J. Photovoltaics, 2 104-8 (2012). https://doi.org/10.1109/JPHOTOV.2011.2181823
- X. Ren, W. Zi, Q. Ma, F. Xiao, F. Gao, S. Hu, Y. Zhou, and S. Liu, "Topology and Texture Controlled ZnO Thin Film Electrodeposition for Superior Solar Cell Efficiency," Sol. Energy Mater. Sol. Cells, 134 54-9 (2015). https://doi.org/10.1016/j.solmat.2014.11.026
- W. Zi, X. Ren, F. Xiao, H. Wang, F. Gao, and S. Liu, "Ag Nanoparticle Enhanced Light Trapping in Hydrogenated Amorphous Silicon Germanium Solar Cells on Flexible Stainless Steel Substrate," Sol. Energy Mater. Sol. Cells, 144 63-7 (2016). https://doi.org/10.1016/j.solmat.2015.08.024
-
S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, "Development of High-Efficiency Flexible
$Cu(In,Ga)Se_2$ Solar Cells: A Study of Alkali Doping Effects on CIS, CIGS, and CGS Using Alkali-Silicate Glass Thin Layers," Curr. Appl. Phys., 10 [2] S154-56 (2010). https://doi.org/10.1016/j.cap.2009.11.024 -
A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, "Highly Efficient
$Cu(In,Ga)Se_2$ Solar Cells Grown on Flexible Polymer Films," Nat. Mater., 10 [11] 857-61 (2011). https://doi.org/10.1038/nmat3122 - A. Romeo, G. Khrypunov, F. Kurdesau, M. Arnold, D. L. Batzner, H. Zogg, and A. N. Tiwari, "High-Efficiency Flexible CdTe Solar Cells on Polymer Substrates," Sol. Energy Mater. Sol. Cells, 90 [18] 3407-15 (2006). https://doi.org/10.1016/j.solmat.2005.09.020
- L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blosch, E. Cheah, A. Chirila, C. M. Fella, H. Hagendorfer, T. Jager, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, "Doping of Polycrystalline CdTe for High-Efficiency Solar Cells on Flexible Metal Foil," Nat. Commun., 4 2306 (2013). https://doi.org/10.1038/ncomms3306
- C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, "Flexible, Long-Lived, Large-Area, Organic Solar Cells," Sol. Energy Mater. Sol. Cells, 91 [5] 379-84 (2007). https://doi.org/10.1016/j.solmat.2006.10.013
- S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Adv. Mater., 20 [21] 4061-67 (2008). https://doi.org/10.1002/adma.200800338
- M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, "Ultrathin and lightweight Organic Solar Cells with High Flexibility," Nat. Commun., 3 770 (2012). https://doi.org/10.1038/ncomms1772
- T.-Y. Chen, Y.-J. Huang, C.-T. Li, C.-W. Kung, R. Vittal, and K.-C. Ho, "Metal-Organic Framework/Sulfonated Polythiophene on Carbon Cloth as a Flexible Counter Electrode for Dye-Sensitized Solar Cells," Nano Energy, 32 19-27 (2017). https://doi.org/10.1016/j.nanoen.2016.12.019
- Z. Xu, T. Li, Q. Liu, F. Zhang, X. Hong, S. Xie, C. Lin, X. Liu, and W. Guo, "Controllable and Large-Scale Fabrication of Rectangular CuS Network Films for Indium Tin Oxide and Pt-Free Flexible Dye-Sensitized Solar Cells," Sol. Energy Mater. Sol. Cells, 179 297-304 (2018). https://doi.org/10.1016/j.solmat.2017.12.024
-
J. S. Feng, Z. Yang, D. Yang, X. D. Ren, X. J. Zhu, Z. W. Jin, W. Zi, Q. B. Wei, and S. Z. Liu, "E-Beam Evaporated
$Nb_2O_5$ as an Effective Electron Transport Layer for Large Flexible Perovskite Solar Cells," Nano Energy, 36 1-8 (2017). https://doi.org/10.1016/j.nanoen.2017.04.010 -
Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Jen, "Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline
$SnO_2$ Nanocrystals as the Robust Electron-Transporting Layer," Adv. Mater., 28 [30] 6478-84 (2016). https://doi.org/10.1002/adma.201600619 -
H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low Temperature Chemically Sintered Nano-Crystalline
$TiO_2$ Electrodes for Flexible Dye-Sensitized Solar Cells," J. Photochem. Photobiol., A, 213 [1] 30-6 (2010). https://doi.org/10.1016/j.jphotochem.2010.04.016 -
F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, and T. M. Brown, "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated
$TiO_2$ Scaffolds on Plastic Substrates," Adv. Energy Mater., 5 [8] 1401808 (2015). https://doi.org/10.1002/aenm.201401808 - B. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y.-C. Joo, K. S. Hong, N.-G. Park, S. Lee, and H. S. Jung, "Highly Efficient and Bending Durable Perovskite Solar Cells: Toward a Wearable Power Source," Energy Environ. Sci., 8 [3] 916-21 (2015). https://doi.org/10.1039/C4EE02441A
- H. C. Weerasinghe, F. Huang, and Y.-B. Cheng, "Fabrication of Flexible Dye Sensitized Solar Cells on Plastic Substrates," Nano Energy, 2 [2] 174-89 (2013). https://doi.org/10.1016/j.nanoen.2012.10.004
-
D. Yang, R. X. Yang, J. Zhang, Z. Yang, S. Z. Liu, and C. Li, "High Efficiency Flexible Perovskite Solar Cells using Superior Low Temperature
$TiO_2$ ," Energy Environ. Sci., 8 [11] 3208-14 (2015). https://doi.org/10.1039/C5EE02155C -
S. S. Mali, C. K. Hong, A. I. Inamdar, H. Im, and S. E. Shim, "Efficient Planar n-i-p Type Heterojunction Flexible Perovskite Solar Cells with Sputtered
$TiO_2$ Electron Transporting Layers," Nanoscale, 9 [9] 3095-104 (2017). https://doi.org/10.1039/C6NR09032J -
L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat, and A. Zaban, "Conformal Nano-Sized Inorganic Coatings on Mesoporous
$TiO_2$ Films for Low-Temperature Dye-Sensitized Solar Cell Fabrication," Adv. Func. Mater., 20 [2] 282-88 (2010). https://doi.org/10.1002/adfm.200901717 -
F. D. Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, and T. M. Brown, "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated
$TiO_2$ Scaffolds on Plastic Substrates," Adv. Energy Mater., 5 [8] 1401808 (2015). https://doi.org/10.1002/aenm.201401808 - M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, "Flexible, Low-Temperature, Solution Processed ZnO-Based Perovskite Solid State Solar Cells," Chem. Commun., 49 [94] 11089-91 (2013). https://doi.org/10.1039/c3cc46534a
-
J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, and S. H. Im, "Highly Efficient Low Temperature Solution Processable Planar Type
$CH_3NH_3PbI_3$ Perovskite Flexible Solar Cells," J.Mater. Chem. A, 4 [5] 1572-78 (2016). https://doi.org/10.1039/C5TA09520D -
K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, and T. Ma, "Low-Temperature and Solution-Processed Amorphous
$WO_X$ as Electron-Selective Layer for Perovskite Solar Cells," J. Phys. Chem. Lett., 6 [5] 755-59 (2015). https://doi.org/10.1021/acs.jpclett.5b00010 - J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility," ACS Nano, 8 [2] 1674-80 (2014). https://doi.org/10.1021/nn406020d
- C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R. J. Ellingson, X. Zhao, and Y. Yan, "Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin Oxide Electron Selective Layers for Highly Efficient Planar Perovskite Solar Cells," J.Mater. Chem. A, 4 [31] 12080-87 (2016). https://doi.org/10.1039/C6TA04503K
- L. Wang, W. F. Fu, Z. W. Gu, C. C. Fan, X. Yang, H. Y. Li, and H. Z. Chen, "Low Temperature Solution Processed Planar Heterojunction Perovskite Solar Cells with a Cdse Nanocrystal as an Electron Transport/Extraction Layer," J.Mater. Chem. C, 2 [43] 9087-90 (2014). https://doi.org/10.1039/C4TC01875C
-
S. S. Shin, W. S. Yang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong, and S. I. Seok, "High-Performance Flexible Perovskite Solar Cells Exploiting
$Zn_2SnO_4$ Prepared in Solution Below 100 Degrees C," Nat. Commun., 6 7410 (2015). https://doi.org/10.1038/ncomms8410 - S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y. C. Joo, I. J. Park, J. H. Noh, and S. I. Seok, "Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells," J. Phys. Chem. Lett., 7 [10] 1845-51 (2016). https://doi.org/10.1021/acs.jpclett.6b00295
- J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, and S. Yang, "Low-Temperature Aqueous Solution Processed ZnO as an Electron Transporting Layer For Efficient Perovskite Solar Cells," Mater. Chem. Front., 1 [5] 802-6 (2017). https://doi.org/10.1039/C6QM00248J
- S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y.-C. Joo, I. J. Park, J. H. Noh, and S. I. Seok, "Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells," J. Phys. Chem. Lett., 7 [10] 1845-51 (2016). https://doi.org/10.1021/acs.jpclett.6b00295
-
A. Kogo, M. Ikegami, and T. Miyasaka, "A
$SnO_x$ -Brookite$TiO_2$ Bilayer Electron Collector for Hysteresis-Less High Efficiency Plastic Perovskite Solar Cells Fabricated at Low Process Temperature," Chem. Commun., 52 [52] 8119-22 (2016). https://doi.org/10.1039/C6CC02589G - P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nat. Commun., 4 2761 (2013). https://doi.org/10.1038/ncomms3761
- K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T. W. Lee, "Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers with High Work Function," Adv. Mater., 26 [37] 6461-66 (2014). https://doi.org/10.1002/adma.201401775
- C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, "Flexible High Efficiency Perovskite Solar Cells," Energy Environ. Sci., 7 [3] 994-97 (2014). https://doi.org/10.1039/c3ee43619e
- K. Poorkazem, D. Liu, and T. L. Kelly, "Fatigue Resistance of a Flexible, Efficient, and Metal Oxide-Free Perovskite Solar Cell," J. Mater. Chem. A, 3 [17] 9241-48 (2015). https://doi.org/10.1039/C5TA00084J
- Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs, and H. Chen, "Interfacial Engineering of Self-Assembled Monolayer Modified Semi-Roll-to-Roll Planar Heterojunction Perovskite Solar Cells on Flexible Substrates," J. Mater. Chem. A, 3 [48] 24254-60 (2015). https://doi.org/10.1039/C5TA07008B
- T. Liu, D. Kim, H. Han, A. R. Yusoff, and J. Jang, "Fine-Tuning Optical and Electronic Properties of Graphene Oxide for Highly Efficient Perovskite Solar Cells," Nanoscale, 7 [24] 10708-18 (2015). https://doi.org/10.1039/C5NR01433F
- M. Kaltenbrunner, G. Adam, E. D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, "Flexible High Power-Per-Weight Perovskite Solar Cells with Chromium Oxide-Metal Contacts for Improved Stability in Air," Nat. Mater., 14 [10] 1032-39 (2015). https://doi.org/10.1038/nmat4388
- H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen, and W. C. Choy, "Pinhole-Free and Surface-Nanostructured NiO Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility," ACS Nano, 10 [1] 1503-11 (2015). https://doi.org/10.1021/acsnano.5b07043
- P.-L. Qin, Q. He, C. Chen, X.-L. Zheng, G. Yang, H. Tao, L.-B. Xiong, L. Xiong, G. Li, and G.-J. Fang, "High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials," Sol. RRL, 1 [8] 1700058 (2017). https://doi.org/10.1002/solr.201700058
- J. S. Kang, J.-Y. Kim, J. Yoon, J. Kim, J. Yang, D. Y. Chung, M.-C. Kim, H. Jeong, Y. J. Son, B. G. Kim, J. Jeong, T. Hyeon, M. Choi, M. J. Ko, and Y.-E. Sung, "Room-Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells," Adv. Sci., 8 [13] 1703114 (2018).
- B. Abdollahi Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, and A. Moshaii, "All-Inorganic Large-Area Low-Cost and Durable Flexible Perovskite Solar Cells Using Copper Foil as a Substrate," Chem. Commun., 53 [4] 747-50 (2017). https://doi.org/10.1039/C6CC07573H
- J. W. Jo, M.-S. Seo, M. Park, J.-Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B.-H. Sohn, M. J. Ko, and H. J. Son, "Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material," Adv. Funct. Mater., 26 [25] 4464-71 (2016). https://doi.org/10.1002/adfm.201600746
- J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong, X. Yang, C. Li, Y. Hao, and B. Cao, "Fully Indium-Free Flexible Ag Nanowires/ZnO:F Composite Transparent Conductive Electrodes with High Haze," J. Mater. Chem. A, 3 [10] 5375-84 (2015). https://doi.org/10.1039/C4TA05728G
- P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nat. Commun., 4 2761 (2013). https://doi.org/10.1038/ncomms3761
- J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung, and M. Choi, "Superflexible, High-Efficiency Perovskite Solar Cells Utilizing Graphene Electrodes: Towards Future Foldable Power Sources," Energy Environ. Sci., 10 [1] 337-45 (2017). https://doi.org/10.1039/C6EE02650H
- Y. Li, L. Meng, Y. M. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, and Y. Li, "High-Efficiency Robust Perovskite Solar Cells on Ultrathin Flexible Substrates," Nat. Commun., 7 10214 (2016). https://doi.org/10.1038/ncomms10214
- C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, "Flexible High Efficiency Perovskite Solar Cells," Energy Environ. Sci., 7 [3] 994 (2014). https://doi.org/10.1039/c3ee43619e
-
Q. Wei, Z. Yang, D. Yang, W. Zi, X. Ren, Y. Liu, X. Liu, J. Feng, and S. Liu, "The Effect of Transparent Conductive Oxide on The Performance
$CH_3NH_3PbI_3$ Perovskite Solar Cell without Electron/Hole Selective Layers," Sol. Energy, 135 654-61 (2016). https://doi.org/10.1016/j.solener.2016.06.044 - M. Lee, Y. Jo, D. S. Kim, and Y. Jun, "Flexible Organo-Metal Halide Perovskite Solar Cells on a Ti Metal Substrate," J. Mater. Chem. A, 3 [8] 4129-33 (2015). https://doi.org/10.1039/C4TA06011C
- J. Troughton, D. Bryant, K. Wojciechowski, M. J. Carnie, H. Snaith, D. A. Worsley, and T. M. Watson, "Highly Efficient, Flexible, Indium-Free Perovskite Solar Cells Employing Metallic Substrates," J. Mater. Chem. A, 3 [17] 9141-45 (2015). https://doi.org/10.1039/C5TA01755F
- H. Lu, J. Sun, H. Zhang, S. Lu, and W. C. Choy, "Room-Temperature Solution-Processed and Metal Oxide-Free Nano-Composite for the Flexible Transparent Bottom Electrode of Perovskite Solar Cells," Nanoscale, 8 [11] 5946-53 (2016). https://doi.org/10.1039/C6NR00011H
-
D. G. Lee, D. Lee, J. S. Yoo, S. Lee, and H. S. Jung, "Effective Passivation of Ag Nanowire-Based Flexible Transparent Conducting Electrode by
$TiO_2$ Nanoshell," Nano Convergence, 3 [1] 20 (2016). https://doi.org/10.1186/s40580-016-0080-z - I. Jeon, J. Yoon, N. Ahn, M. Atwa, C. Delacou, A. Anisimov, E. I. Kauppinen, M. Choi, S. Maruyama, and Y. Matsuo, "Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells," J. Phys. Chem. Lett., 8 [21] 5395-401 (2017). https://doi.org/10.1021/acs.jpclett.7b02229
- Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu, Z. Yao, Y. Zhou, N. Wang, K. Jiang, H. Lin, and Z. Guo, "Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with All-Inorganic Charge Contacts," Adv. Func. Mater., 27 [42] 1703068 (2017). https://doi.org/10.1002/adfm.201703068
Cited by
- Extraction of interface trap density by analyzing organohalide perovskite and metal contacts using device simulation vol.9, pp.12, 2018, https://doi.org/10.1063/1.5127959
- Progress of High‐Throughput and Low‐Cost Flexible Perovskite Solar Cells vol.4, pp.8, 2020, https://doi.org/10.1002/solr.201900556
- Lead-free all-inorganic halide perovskite quantum dots: review and outlook vol.57, pp.5, 2018, https://doi.org/10.1007/s43207-020-00058-5
- Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2
- Interfaces and Interfacial Carrier Dynamics in Perovskites vol.125, pp.28, 2018, https://doi.org/10.1021/acs.jpcc.1c01849
- Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell vol.14, pp.21, 2018, https://doi.org/10.3390/ma14216341