DOI QR코드

DOI QR Code

Recent Progress in Flexible Perovskite Solar Cell Development

  • Ren, Xiaodong (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Jung, Hyun Suk (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • Received : 2018.04.27
  • Accepted : 2018.06.19
  • Published : 2018.07.31

Abstract

Perovskite solar cells (PSCs) are a new class of photovoltaic devices, which have attracted significant attention due to their remarkable optoelectrical properties, including high absorption coefficients, high carrier mobilities, long carrier diffusion lengths, tunable bandgaps, low cost, and facile fabrication. PSCs have reached efficiencies of 22.70% and 18.36% on rigid fluorine-doped tin oxide and poly(ethylene terephthalate) substrates, respectively; these are comparable to those of single-crystal silicon and copper-indium-gallium-selenium solar cells. Over the past eight years, the photo conversion efficiency of PSCs has been significantly improved by device-architecture adjustments, and absorber and electron/hole transport layer optimization. Each layer is important for the performance of PSCs; hence, we discuss achievements in flexible perovskite solar cells (FPSCs), covering electron/hole-transport materials, electrode materials. We give a comprehensive overview of FPSCs and put forward suggestions for their further development.

Keywords

References

  1. N. R. E. Laboratory, Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed on 09/04/2018.
  2. C. Wang, L. Guan, D. Zhao, Y. Yu, C. R. Grice, Z. Song, R. A. Awni, J. Chen, J. Wang, X. Zhao, and Y. Yan, "Water Vapor Treatment of Low-Temperature Deposited $SnO_2$ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells," ACS Energy Lett., 2 [9] 2118-24 (2017). https://doi.org/10.1021/acsenergylett.7b00644
  3. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131 [17] 6050-51 (2009). https://doi.org/10.1021/ja809598r
  4. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell," Nanoscale, 3 [10] 4088-93 (2011). https://doi.org/10.1039/c1nr10867k
  5. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Sci. Rep., 2 591 (2012). https://doi.org/10.1038/srep00591
  6. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, 338 [6107] 643-47 (2012). https://doi.org/10.1126/science.1228604
  7. M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition," Nature, 501 [7467] 395-98 (2013). https://doi.org/10.1038/nature12509
  8. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells," Nat. Mater., 13 [9] 897-903 (2014). https://doi.org/10.1038/nmat4014
  9. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells," Angew. Chem., Int. Ed. Engl., 53 [37] 9898-903 (2014). https://doi.org/10.1002/anie.201405334
  10. D. Y. Liu and T. L. Kelly, "Perovskite Solar Cells with A Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques," Nat. Photonics, 8 [2] 133-38 (2014). https://doi.org/10.1038/nphoton.2013.342
  11. N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Gratzel, "Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%," Science, 358 [6364] 768-71 (2017).
  12. W. Chen, Y. Z. Wu, Y. F. Yue, J. Liu, W. J. Zhang, X. D. Yang, H. Chen, E. B. Bi, I. Ashraful, M. Gratzel, and L. Y. Han, "Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers," Science, 350 [6263] 944-48 (2015). https://doi.org/10.1126/science.aad1015
  13. D. Yang, R. Yang, X. Ren, X. Zhu, Z. Yang, C. Li, and S. F. Liu, "Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport," Adv. Mater., 28 [26] 5206-13 (2016). https://doi.org/10.1002/adma.201600446
  14. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. J. Lin, and A. K. Y. Jen, "Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells," Adv. Mater., 26 [22] 3748-54 (2014). https://doi.org/10.1002/adma.201400231
  15. H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu, and Y. Yang, "Interface Engineering of Highly Efficient Perovskite Solar Cells," Science, 345 [6196] 542-46 (2014). https://doi.org/10.1126/science.1254050
  16. J. X. Song, E. Q. Zheng, J. Bian, X. F. Wang, W. J. Tian, Y. Sanehira, and T. Miyasaka, "Low-Temperature $SnO_2$-Based Electron Selective Contact for Efficient and Stable Perovskite Solar Cells," J. Mater. Chem. A, 3 [20] 10837-44 (2015). https://doi.org/10.1039/C5TA01207D
  17. W. Y. Nie, H. H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, "High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains," Science, 347 [6221] 522-25 (2015). https://doi.org/10.1126/science.aaa0472
  18. X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, "A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells," Science, 353 [6294] 58-62 (2016). https://doi.org/10.1126/science.aaf8060
  19. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, "Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells," Science, 356 1376-79 (2017). https://doi.org/10.1126/science.aan2301
  20. B. Susrutha, L. Giribabu, and S. P. Singh, "Recent Advances in Flexible Perovskite Solar Cells," Chem. Commun., 51 [79] 14696-707 (2015). https://doi.org/10.1039/C5CC03666F
  21. A. Banerjee, T. Su, D. Beglau, G. Pietka, F. S. Liu, S. Almutawalli, J. Yang, and S. Guha, "High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate," IEEE J. Photovoltaics, 2 [2] 9-103 (2012).
  22. A. Banerjee, F. S. Liu, D. B., T. Su, G. Pietka, J. Yang, and S. Guha, "12.0% Efficiency on Large-Area, Encapsulated, Multijunction nc-Si:H-Based Solar Cells," IEEE J. Photovoltaics, 2 104-8 (2012). https://doi.org/10.1109/JPHOTOV.2011.2181823
  23. X. Ren, W. Zi, Q. Ma, F. Xiao, F. Gao, S. Hu, Y. Zhou, and S. Liu, "Topology and Texture Controlled ZnO Thin Film Electrodeposition for Superior Solar Cell Efficiency," Sol. Energy Mater. Sol. Cells, 134 54-9 (2015). https://doi.org/10.1016/j.solmat.2014.11.026
  24. W. Zi, X. Ren, F. Xiao, H. Wang, F. Gao, and S. Liu, "Ag Nanoparticle Enhanced Light Trapping in Hydrogenated Amorphous Silicon Germanium Solar Cells on Flexible Stainless Steel Substrate," Sol. Energy Mater. Sol. Cells, 144 63-7 (2016). https://doi.org/10.1016/j.solmat.2015.08.024
  25. S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, "Development of High-Efficiency Flexible $Cu(In,Ga)Se_2$ Solar Cells: A Study of Alkali Doping Effects on CIS, CIGS, and CGS Using Alkali-Silicate Glass Thin Layers," Curr. Appl. Phys., 10 [2] S154-56 (2010). https://doi.org/10.1016/j.cap.2009.11.024
  26. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, "Highly Efficient $Cu(In,Ga)Se_2$ Solar Cells Grown on Flexible Polymer Films," Nat. Mater., 10 [11] 857-61 (2011). https://doi.org/10.1038/nmat3122
  27. A. Romeo, G. Khrypunov, F. Kurdesau, M. Arnold, D. L. Batzner, H. Zogg, and A. N. Tiwari, "High-Efficiency Flexible CdTe Solar Cells on Polymer Substrates," Sol. Energy Mater. Sol. Cells, 90 [18] 3407-15 (2006). https://doi.org/10.1016/j.solmat.2005.09.020
  28. L. Kranz, C. Gretener, J. Perrenoud, R. Schmitt, F. Pianezzi, F. La Mattina, P. Blosch, E. Cheah, A. Chirila, C. M. Fella, H. Hagendorfer, T. Jager, S. Nishiwaki, A. R. Uhl, S. Buecheler, and A. N. Tiwari, "Doping of Polycrystalline CdTe for High-Efficiency Solar Cells on Flexible Metal Foil," Nat. Commun., 4 2306 (2013). https://doi.org/10.1038/ncomms3306
  29. C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, "Flexible, Long-Lived, Large-Area, Organic Solar Cells," Sol. Energy Mater. Sol. Cells, 91 [5] 379-84 (2007). https://doi.org/10.1016/j.solmat.2006.10.013
  30. S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, "Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes," Adv. Mater., 20 [21] 4061-67 (2008). https://doi.org/10.1002/adma.200800338
  31. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, and S. Bauer, "Ultrathin and lightweight Organic Solar Cells with High Flexibility," Nat. Commun., 3 770 (2012). https://doi.org/10.1038/ncomms1772
  32. T.-Y. Chen, Y.-J. Huang, C.-T. Li, C.-W. Kung, R. Vittal, and K.-C. Ho, "Metal-Organic Framework/Sulfonated Polythiophene on Carbon Cloth as a Flexible Counter Electrode for Dye-Sensitized Solar Cells," Nano Energy, 32 19-27 (2017). https://doi.org/10.1016/j.nanoen.2016.12.019
  33. Z. Xu, T. Li, Q. Liu, F. Zhang, X. Hong, S. Xie, C. Lin, X. Liu, and W. Guo, "Controllable and Large-Scale Fabrication of Rectangular CuS Network Films for Indium Tin Oxide and Pt-Free Flexible Dye-Sensitized Solar Cells," Sol. Energy Mater. Sol. Cells, 179 297-304 (2018). https://doi.org/10.1016/j.solmat.2017.12.024
  34. J. S. Feng, Z. Yang, D. Yang, X. D. Ren, X. J. Zhu, Z. W. Jin, W. Zi, Q. B. Wei, and S. Z. Liu, "E-Beam Evaporated $Nb_2O_5$ as an Effective Electron Transport Layer for Large Flexible Perovskite Solar Cells," Nano Energy, 36 1-8 (2017). https://doi.org/10.1016/j.nanoen.2017.04.010
  35. Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Jen, "Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline $SnO_2$ Nanocrystals as the Robust Electron-Transporting Layer," Adv. Mater., 28 [30] 6478-84 (2016). https://doi.org/10.1002/adma.201600619
  36. H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low Temperature Chemically Sintered Nano-Crystalline $TiO_2$ Electrodes for Flexible Dye-Sensitized Solar Cells," J. Photochem. Photobiol., A, 213 [1] 30-6 (2010). https://doi.org/10.1016/j.jphotochem.2010.04.016
  37. F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, and T. M. Brown, "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated $TiO_2$ Scaffolds on Plastic Substrates," Adv. Energy Mater., 5 [8] 1401808 (2015). https://doi.org/10.1002/aenm.201401808
  38. B. J. Kim, D. H. Kim, Y.-Y. Lee, H.-W. Shin, G. S. Han, J. S. Hong, K. Mahmood, T. K. Ahn, Y.-C. Joo, K. S. Hong, N.-G. Park, S. Lee, and H. S. Jung, "Highly Efficient and Bending Durable Perovskite Solar Cells: Toward a Wearable Power Source," Energy Environ. Sci., 8 [3] 916-21 (2015). https://doi.org/10.1039/C4EE02441A
  39. H. C. Weerasinghe, F. Huang, and Y.-B. Cheng, "Fabrication of Flexible Dye Sensitized Solar Cells on Plastic Substrates," Nano Energy, 2 [2] 174-89 (2013). https://doi.org/10.1016/j.nanoen.2012.10.004
  40. D. Yang, R. X. Yang, J. Zhang, Z. Yang, S. Z. Liu, and C. Li, "High Efficiency Flexible Perovskite Solar Cells using Superior Low Temperature $TiO_2$," Energy Environ. Sci., 8 [11] 3208-14 (2015). https://doi.org/10.1039/C5EE02155C
  41. S. S. Mali, C. K. Hong, A. I. Inamdar, H. Im, and S. E. Shim, "Efficient Planar n-i-p Type Heterojunction Flexible Perovskite Solar Cells with Sputtered $TiO_2$ Electron Transporting Layers," Nanoscale, 9 [9] 3095-104 (2017). https://doi.org/10.1039/C6NR09032J
  42. L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat, and A. Zaban, "Conformal Nano-Sized Inorganic Coatings on Mesoporous $TiO_2$ Films for Low-Temperature Dye-Sensitized Solar Cell Fabrication," Adv. Func. Mater., 20 [2] 282-88 (2010). https://doi.org/10.1002/adfm.200901717
  43. F. D. Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, and T. M. Brown, "Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated $TiO_2$ Scaffolds on Plastic Substrates," Adv. Energy Mater., 5 [8] 1401808 (2015). https://doi.org/10.1002/aenm.201401808
  44. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, "Flexible, Low-Temperature, Solution Processed ZnO-Based Perovskite Solid State Solar Cells," Chem. Commun., 49 [94] 11089-91 (2013). https://doi.org/10.1039/c3cc46534a
  45. J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, and S. H. Im, "Highly Efficient Low Temperature Solution Processable Planar Type $CH_3NH_3PbI_3$ Perovskite Flexible Solar Cells," J.Mater. Chem. A, 4 [5] 1572-78 (2016). https://doi.org/10.1039/C5TA09520D
  46. K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu, and T. Ma, "Low-Temperature and Solution-Processed Amorphous $WO_X$ as Electron-Selective Layer for Perovskite Solar Cells," J. Phys. Chem. Lett., 6 [5] 755-59 (2015). https://doi.org/10.1021/acs.jpclett.5b00010
  47. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, "Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility," ACS Nano, 8 [2] 1674-80 (2014). https://doi.org/10.1021/nn406020d
  48. C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. Yu, P. Liu, N. Cheng, R. J. Ellingson, X. Zhao, and Y. Yan, "Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin Oxide Electron Selective Layers for Highly Efficient Planar Perovskite Solar Cells," J.Mater. Chem. A, 4 [31] 12080-87 (2016). https://doi.org/10.1039/C6TA04503K
  49. L. Wang, W. F. Fu, Z. W. Gu, C. C. Fan, X. Yang, H. Y. Li, and H. Z. Chen, "Low Temperature Solution Processed Planar Heterojunction Perovskite Solar Cells with a Cdse Nanocrystal as an Electron Transport/Extraction Layer," J.Mater. Chem. C, 2 [43] 9087-90 (2014). https://doi.org/10.1039/C4TC01875C
  50. S. S. Shin, W. S. Yang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong, and S. I. Seok, "High-Performance Flexible Perovskite Solar Cells Exploiting $Zn_2SnO_4$ Prepared in Solution Below 100 Degrees C," Nat. Commun., 6 7410 (2015). https://doi.org/10.1038/ncomms8410
  51. S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y. C. Joo, I. J. Park, J. H. Noh, and S. I. Seok, "Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells," J. Phys. Chem. Lett., 7 [10] 1845-51 (2016). https://doi.org/10.1021/acs.jpclett.6b00295
  52. J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, and S. Yang, "Low-Temperature Aqueous Solution Processed ZnO as an Electron Transporting Layer For Efficient Perovskite Solar Cells," Mater. Chem. Front., 1 [5] 802-6 (2017). https://doi.org/10.1039/C6QM00248J
  53. S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y.-C. Joo, I. J. Park, J. H. Noh, and S. I. Seok, "Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells," J. Phys. Chem. Lett., 7 [10] 1845-51 (2016). https://doi.org/10.1021/acs.jpclett.6b00295
  54. A. Kogo, M. Ikegami, and T. Miyasaka, "A $SnO_x$-Brookite $TiO_2$ Bilayer Electron Collector for Hysteresis-Less High Efficiency Plastic Perovskite Solar Cells Fabricated at Low Process Temperature," Chem. Commun., 52 [52] 8119-22 (2016). https://doi.org/10.1039/C6CC02589G
  55. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nat. Commun., 4 2761 (2013). https://doi.org/10.1038/ncomms3761
  56. K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, and T. W. Lee, "Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self-Organized Polymeric Hole Extraction Layers with High Work Function," Adv. Mater., 26 [37] 6461-66 (2014). https://doi.org/10.1002/adma.201401775
  57. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, "Flexible High Efficiency Perovskite Solar Cells," Energy Environ. Sci., 7 [3] 994-97 (2014). https://doi.org/10.1039/c3ee43619e
  58. K. Poorkazem, D. Liu, and T. L. Kelly, "Fatigue Resistance of a Flexible, Efficient, and Metal Oxide-Free Perovskite Solar Cell," J. Mater. Chem. A, 3 [17] 9241-48 (2015). https://doi.org/10.1039/C5TA00084J
  59. Z. Gu, L. Zuo, T. T. Larsen-Olsen, T. Ye, G. Wu, F. C. Krebs, and H. Chen, "Interfacial Engineering of Self-Assembled Monolayer Modified Semi-Roll-to-Roll Planar Heterojunction Perovskite Solar Cells on Flexible Substrates," J. Mater. Chem. A, 3 [48] 24254-60 (2015). https://doi.org/10.1039/C5TA07008B
  60. T. Liu, D. Kim, H. Han, A. R. Yusoff, and J. Jang, "Fine-Tuning Optical and Electronic Properties of Graphene Oxide for Highly Efficient Perovskite Solar Cells," Nanoscale, 7 [24] 10708-18 (2015). https://doi.org/10.1039/C5NR01433F
  61. M. Kaltenbrunner, G. Adam, E. D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci, and S. Bauer, "Flexible High Power-Per-Weight Perovskite Solar Cells with Chromium Oxide-Metal Contacts for Improved Stability in Air," Nat. Mater., 14 [10] 1032-39 (2015). https://doi.org/10.1038/nmat4388
  62. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen, and W. C. Choy, "Pinhole-Free and Surface-Nanostructured NiO Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility," ACS Nano, 10 [1] 1503-11 (2015). https://doi.org/10.1021/acsnano.5b07043
  63. P.-L. Qin, Q. He, C. Chen, X.-L. Zheng, G. Yang, H. Tao, L.-B. Xiong, L. Xiong, G. Li, and G.-J. Fang, "High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials," Sol. RRL, 1 [8] 1700058 (2017). https://doi.org/10.1002/solr.201700058
  64. J. S. Kang, J.-Y. Kim, J. Yoon, J. Kim, J. Yang, D. Y. Chung, M.-C. Kim, H. Jeong, Y. J. Son, B. G. Kim, J. Jeong, T. Hyeon, M. Choi, M. J. Ko, and Y.-E. Sung, "Room-Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells," Adv. Sci., 8 [13] 1703114 (2018).
  65. B. Abdollahi Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, and A. Moshaii, "All-Inorganic Large-Area Low-Cost and Durable Flexible Perovskite Solar Cells Using Copper Foil as a Substrate," Chem. Commun., 53 [4] 747-50 (2017). https://doi.org/10.1039/C6CC07573H
  66. J. W. Jo, M.-S. Seo, M. Park, J.-Y. Kim, J. S. Park, I. K. Han, H. Ahn, J. W. Jung, B.-H. Sohn, M. J. Ko, and H. J. Son, "Improving Performance and Stability of Flexible Planar-Heterojunction Perovskite Solar Cells Using Polymeric Hole-Transport Material," Adv. Funct. Mater., 26 [25] 4464-71 (2016). https://doi.org/10.1002/adfm.201600746
  67. J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong, X. Yang, C. Li, Y. Hao, and B. Cao, "Fully Indium-Free Flexible Ag Nanowires/ZnO:F Composite Transparent Conductive Electrodes with High Haze," J. Mater. Chem. A, 3 [10] 5375-84 (2015). https://doi.org/10.1039/C4TA05728G
  68. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, "Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates," Nat. Commun., 4 2761 (2013). https://doi.org/10.1038/ncomms3761
  69. J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung, and M. Choi, "Superflexible, High-Efficiency Perovskite Solar Cells Utilizing Graphene Electrodes: Towards Future Foldable Power Sources," Energy Environ. Sci., 10 [1] 337-45 (2017). https://doi.org/10.1039/C6EE02650H
  70. Y. Li, L. Meng, Y. M. Yang, G. Xu, Z. Hong, Q. Chen, J. You, G. Li, Y. Yang, and Y. Li, "High-Efficiency Robust Perovskite Solar Cells on Ultrathin Flexible Substrates," Nat. Commun., 7 10214 (2016). https://doi.org/10.1038/ncomms10214
  71. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin, and H. J. Bolink, "Flexible High Efficiency Perovskite Solar Cells," Energy Environ. Sci., 7 [3] 994 (2014). https://doi.org/10.1039/c3ee43619e
  72. Q. Wei, Z. Yang, D. Yang, W. Zi, X. Ren, Y. Liu, X. Liu, J. Feng, and S. Liu, "The Effect of Transparent Conductive Oxide on The Performance $CH_3NH_3PbI_3$ Perovskite Solar Cell without Electron/Hole Selective Layers," Sol. Energy, 135 654-61 (2016). https://doi.org/10.1016/j.solener.2016.06.044
  73. M. Lee, Y. Jo, D. S. Kim, and Y. Jun, "Flexible Organo-Metal Halide Perovskite Solar Cells on a Ti Metal Substrate," J. Mater. Chem. A, 3 [8] 4129-33 (2015). https://doi.org/10.1039/C4TA06011C
  74. J. Troughton, D. Bryant, K. Wojciechowski, M. J. Carnie, H. Snaith, D. A. Worsley, and T. M. Watson, "Highly Efficient, Flexible, Indium-Free Perovskite Solar Cells Employing Metallic Substrates," J. Mater. Chem. A, 3 [17] 9141-45 (2015). https://doi.org/10.1039/C5TA01755F
  75. H. Lu, J. Sun, H. Zhang, S. Lu, and W. C. Choy, "Room-Temperature Solution-Processed and Metal Oxide-Free Nano-Composite for the Flexible Transparent Bottom Electrode of Perovskite Solar Cells," Nanoscale, 8 [11] 5946-53 (2016). https://doi.org/10.1039/C6NR00011H
  76. D. G. Lee, D. Lee, J. S. Yoo, S. Lee, and H. S. Jung, "Effective Passivation of Ag Nanowire-Based Flexible Transparent Conducting Electrode by $TiO_2$ Nanoshell," Nano Convergence, 3 [1] 20 (2016). https://doi.org/10.1186/s40580-016-0080-z
  77. I. Jeon, J. Yoon, N. Ahn, M. Atwa, C. Delacou, A. Anisimov, E. I. Kauppinen, M. Choi, S. Maruyama, and Y. Matsuo, "Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells," J. Phys. Chem. Lett., 8 [21] 5395-401 (2017). https://doi.org/10.1021/acs.jpclett.7b02229
  78. Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren, L. Wu, Z. Yao, Y. Zhou, N. Wang, K. Jiang, H. Lin, and Z. Guo, "Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with All-Inorganic Charge Contacts," Adv. Func. Mater., 27 [42] 1703068 (2017). https://doi.org/10.1002/adfm.201703068

Cited by

  1. Extraction of interface trap density by analyzing organohalide perovskite and metal contacts using device simulation vol.9, pp.12, 2018, https://doi.org/10.1063/1.5127959
  2. Progress of High‐Throughput and Low‐Cost Flexible Perovskite Solar Cells vol.4, pp.8, 2020, https://doi.org/10.1002/solr.201900556
  3. Lead-free all-inorganic halide perovskite quantum dots: review and outlook vol.57, pp.5, 2018, https://doi.org/10.1007/s43207-020-00058-5
  4. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2
  5. Interfaces and Interfacial Carrier Dynamics in Perovskites vol.125, pp.28, 2018, https://doi.org/10.1021/acs.jpcc.1c01849
  6. Simulating the Performance of a Formamidinium Based Mixed Cation Lead Halide Perovskite Solar Cell vol.14, pp.21, 2018, https://doi.org/10.3390/ma14216341