Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.8.430

Effect of Microstructure of Quantum Dot Layer on Electroluminescent Properties of Quantum Dot Light Emitting Devices  

Yoon, Sung-Lyong (Department of Nano-system Engineering, Inje University)
Jeon, Minhyon (Department of Nano-system Engineering, Inje University)
Lee, Jeon-Kook (Interface Control Research Center, Korea Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.23, no.8, 2013 , pp. 430-434 More about this Journal
Abstract
Quantum dots(QDs) with their tunable luminescence properties are uniquely suited for use as lumophores in light emitting device. We investigate the microstructural effect on the electroluminescence(EL). Here we report the use of inorganic semiconductors as robust charge transport layers, and demonstrate devices with light emission. We chose mechanically smooth and compositionally amorphous films to prevent electrical shorts. We grew semiconducting oxide films with low free-carrier concentrations to minimize quenching of the QD EL. The hole transport layer(HTL) and electron transport layer(ETL) were chosen to have carrier concentrations and energy-band offsets similar to the QDs so that electron and hole injection into the QD layer was balanced. For the ETL and the HTL, we selected a 40-nm-thick $ZnSnO_x$ with a resistivity of $10{\Omega}{\cdot}cm$, which show bright and uniform emission at a 10 V applied bias. Light emitting uniformity was improved by reducing the rpm of QD spin coating.At a QD concentration of 15.0 mg/mL, we observed bright and uniform electroluminescence at a 12 V applied bias. The significant decrease in QD luminescence can be attributed to the non-uniform QD layers. This suggests that we should control the interface between QD layers and charge transport layers to improve the electroluminescence.
Keywords
quantum dot LEDs; inorganic semiconductor; spin-coating; electroluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett., 9, 2532 (2009).   DOI   ScienceOn
2 L. A. Kim, P. O. Anikeeva, S. Coe-Sullivan, J. S. Steckel, M. G. Bawendi and V. Bulovic, Nano Lett., 8, 4513 (2008).   DOI   ScienceOn
3 J. -M. Caruge, J. E. Halpert, V. Wood, M. G. Bawendi and V. Bulovic, Nat. Photonics, 2, 247 (2008).   DOI   ScienceOn
4 V. Wood, M. J. Panzer, J. -M. Caruge, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett., 10, 24 (2010).   DOI   ScienceOn
5 V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. J. Malko, A. Hollingsworth, C. A. Leatherdale, H. -J. M. Eisler and M. G. Bawendi, Science, 290, 314 (2000).   DOI   ScienceOn
6 M. Maillard, L. Motte and M. -P. Pileni, Adv. Mater., 13, 200 (2001).   DOI
7 S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi and V. Bulovic, Adv. Funct. Mater., 15, 1117 (2005).   DOI   ScienceOn
8 P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi and V. Bulovic, Phys. Rev. B, 78, 085434 (2008).   DOI   ScienceOn
9 J. Zhao, J. A. Bardecker, A. M. Munro and D. S. Ginger. Nano Lett., 6, 463 (2006).   DOI   ScienceOn
10 M. Schlamp, X. Peng and A. P. Alivisatos, J. Appl. Phys., 82, 5837 (1997).   DOI   ScienceOn
11 S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Nature 420, 800 (2002).   DOI   ScienceOn
12 J. -M. Caruge, J. E. Halpert, V. Bulovic and M. G. Bawendi, Nano Lett., 6, 2991 (2006).   DOI   ScienceOn