• Title/Summary/Keyword: electron lenses

Search Result 57, Processing Time 0.023 seconds

A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method (유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구)

  • Park, Keun;Jung, Hyun-Woo;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Design and Analysis of Magnetic Field Control in Electron Lenses for a E-Beam Writer (전자빔 가공기용 자기 렌즈의 자기장 제어구조 설계)

  • 노승국;이찬홍;백영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-beam writing technology is rapidly growing in MEMS and nano-engineering areas. In the optical column of the e-beam writer, there are several lenses condensing and focusing electron beams from electron gun with fringing magnetic fields. To achieve small spot size as 1-2 nm for higher power of electron beam, magnetic lenses should be designed considering their magnetic field distribution. In this paper, the magnetic field at two condenser lenses and object lens are calculated with finite element method and discussed its performances.

  • PDF

New Fabrication Method of the Electron Beam Microcolumn and Its Performance Evaluation (초소형 전자칼럼의 제작 및 특성 연구)

  • Ahn S;Kim D. W;Kim Y. C;Ahn S. J;Kim Y. J;Kim H. S
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2004
  • An electron beam microcolumn composed of an electron emitter, micro lenses, scan deflector, and focus lenses have been fabricated and tested in the STEM mode. In this paper, we report a technique of precisely aligning the electron lenses by the laser diffraction patterns instead of the conventional alignment method based on aligner and STM. STEM images of a standard Cu-grid were observed using a fabricated microcolumn under both the retarding and accelerating modes.

The development of scanning electron microscopy (전자현미경 개발)

  • Oh H. J.;Chang D. Y.;Yang H. N.;Kim D. H.;Park M, J.;Shim C. H.;Kim C. S.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.15-18
    • /
    • 2005
  • We have designed and fabricated a thermal scanning electron microscopy. It includes an electron source, two condenser lenses, one objective lens, a scanning coil and a stigmator coil for focusing in column and also have a secondary electron detector for constructing the image in chamber with a high vacuum condition and control part for operating the SEM. Especially, in order for us to find out the optical characteristics, our attention and studies have been concentrated on the effects of two condenser lenses and one objective lens for high resolution with SEM. Finally, we developed a high resolution thermal scanning electron microscopy.

  • PDF

Research on the electron-beam characteristics according to the shape of electron lenses in low-energy microcolumn using Monte Carlo numerical analysis (Monte Carlo 수치해석법을 이용한 저 에너지 초소형 마이크로칼럼에 사용되는 전자렌즈의 모양에 따른 전자빔 특성 연구)

  • Kim, Young-Chul;Kim, Ho-Seob;Kim, Dae-Wook;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • Due to the modem MEMS technologies, the electron lenses that are used in the microcolumn can have much smaller optical aberrations compared with conventional electron lenses for the bulky electron columns. Since the electron lens system have great effect on the performance of the microcolumn, it is important to study the dependence of image quality on the configuration of the electronic imaging system, among which the source-lens part is most sensitive. In this work, we investigated the electron beam characteristics according to the shapes of extractor and limiting aperture that are elements of the source-lens part. By analyzing the data obtained, we proposed the optimum configuration of the electron lens system.

Performance Experiment of Electron Beam Convergence Instrument (Finishing 용 전자빔 집속 장치의 성능 실험)

  • Lim, Sun Jong
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.6-8
    • /
    • 2015
  • Finishing process includes deburring, polishing and edge radiusing. It improves the surface profile of specimen and eliminates the alien substance on surface. Deburring is the elimination process for debris of edges. Polishing lubricates surfaces by rubbing or chemical treatment. There are two types for electron finishing. The one is using pulse beam. The other is using the convergent and scanning electron beam. Pulse type device appropriates the large area process. But it does not control the beam dosage. Scanning type device has advantages for dosage control and edge deburring. We design the convergence and scan type. It has magnetic lenses for convergence and scan device for scanning beam. Magnetic lenses consist of convergent and objective lens. The lenses are designed by the specification(beam size and working distance). In this paper, we evaluate the convergence performance by pattern process. Also, we analysis the results and important factors for process. The important factors for process are beam size, pressure, stage speed and vacuum. These results will be utilized into systematizing pattern shape and the factors.

Realization for Each Element for capturing image in Scanning Electron Microscopy (주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

Operating System Design of Multi Beam Control System with Miniaturized Electron Beam Columns (초소형 전자빔을 이용한 멀티 전자빔 운영 시스템 설계)

  • Lim, Sun Jong;Kim, Ho Seob
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.12-16
    • /
    • 2015
  • The research on multi electron beam systems is being carried out by various methods. We are studying multi electron beam system using miniaturized electron beam columns. The column consists of electrostatic lenses, electrostatic deflector and tip emitter. Our operating system controls 4 column array, captures images of each column and maintains the instrument. We present the usefulness of our operating system for multi columns by capturing images of each column.

Finite Element Analysis for Electron Optical System of a Field Emission SEM (전계방출 주사전자 현미경의 전자광학계 유한요소해석)

  • Park, Keun;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.

Study on the Optical Thin Film Coating of Glass Lenses Prepared by Electron Beam Deposition (전자 빔 증착에 의한 안경렌즈의 박막 코팅에 관한 연구)

  • 김종태;김지홍;김원호
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.47-58
    • /
    • 2000
  • Transmittances of SiO2 and ZrO2 thin films, made by the electron beam evaporation method, were measured with a spectrophotometer to be used in determining their optical constants and thicknesses in the envelop method. New color glass lenses with high transmittance, which now can be manufactured in the industry, was successfully designed by using these constants. Also the vacuum evaporator could be mechanically corrected with these constants as correction factors.

  • PDF