• Title/Summary/Keyword: electron concentration

Search Result 2,172, Processing Time 0.034 seconds

Degradation Efficiency and Characterization of Lincomycin by Electron Beam Irradiation

  • Ham, Hyun-Sun;Cho, Hyun-Woo;Myung, Seung-Woon
    • Mass Spectrometry Letters
    • /
    • v.5 no.3
    • /
    • pp.89-93
    • /
    • 2014
  • Lincomycin is one of the major species among the Pharmaceuticals and Personal Care Products (PPCPs) detected from the four major rivers in Korea. The structure characterization was performed of six degradation products of lincomycin formed under the irradiation of electron beam, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of degradation products that are fortified with lincomycin, were performed at the dose of 10 kGy. The separation of degradation products and lincomycin was carried out using a C18 column ($2.1{\times}100$ mm, $3.5{\mu}m$), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of six degradation products of lincomycin were proposed by interpretation of mass spectra and chromatograms by LC-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Experiments were performed of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in an aqueous environment. In addition, increased degradation efficiency was observed with a higher dose of electron beam and lower concentration.

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment

  • Hirakawa, Kazutaka;Ito, Yusuke;Yamada, Takashi;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.81-84
    • /
    • 2014
  • To examine the microenvironmental effect of DNA on the photosensitized reaction, the electron-donor-connecting porphyrin, meso-(9-phenanthryl)-tris(N-methyl-p-pyridinio) porphyrin (Phen-TMPyP), was synthesized. Phen-TMPyP can bind to oligonucleotides with two binding modes, depending on the DNA concentration. The fluorescence lifetime measurement of Phen-TMPyP shows a shorter component than that of the reference porphyrin without the phenanthryl moiety. However, the observed value is much longer than those of previously reported similar types of electron-donor-connecting porphyrins, suggesting that electron-transfer quenching by the phenanthryl moiety is not sufficient. The fluorescence quantum yield of Phen-TMPyP ($5{\mu}M$) decreased with an increase in DNA concentration of up to $5{\mu}M$ base pair (bp), possibly due to self-quenching through an aggregation along the DNA strand, increased with an increase in DNA concentration of more than $5{\mu}M$ bp and reached a plateau. The fluorescence quantum yield of Phen-TMPyP with a sufficient concentration of DNA was larger than that of the reference porphyrin. The singlet oxygen ($^1O_2$) generating activity of Phen-TMPyP was confirmed by the near-infrared emission spectrum measurement. The quantum yield of $^1O_2$ generation was decreased by a relatively small concentration of DNA, possibly due to the aggregation of Phen-TMPyP, and recovered with a sufficient concentration of DNA. The recovered quantum yield was rather smaller than that without DNA, indicating the quenching of $^1O_2$ by DNA. These results show that a DNA strand can stabilize the photoexcited state of a photosensitizer and, in a certain case, suppresses the $^1O_2$ generation.

The Influence of Glutaraldehyde Concentration on Electron Microscopic Multiple Immunostaining

  • Bae, Jae Seok;Yeo, Eun Jin;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.183-187
    • /
    • 2015
  • The present study was aimed to evaluate the influence of glutaraldehyde (GA) concentration on multiple electron microscopic (EM) immunostaining using pre-embedding peroxidase and post-embedding immunogold method. Influence of various concentrations of GA included in the fixative on immuoreactivity was assessed in the multiple immunostaining using antisera against anti-transient receptor potential vanilloid 1 (TRPV1) for peroxidase staining and anti-GABA for immunogold labeling in the rat trigeminal caudal nucleus. Anti-TRPV1 antiserum had specificity in pre-embedding peroxidase staining when tissues were fixed with fixative containing paraformaldehyde (PFA) alone. Immunoreactivity for TRPV1 was specific in tissues fixed with fixative containing 0.5% GA at both perfusion and postfixation steps, though the immunoreactivity was weaker than in tissues fixed with fixative containing PFA alone. Tissues fixed with fixative containing 0.5% GA at the perfusion and postfixation steps showed specific immunogold staining for GABA. The results of the present study indicate that GA concentration is critical for immunoreactivity to antigens such as TRPV1 and GABA. This study also suggests that the appropriate GA concentration is 0.5% for multiple immunostaining with peroxidase labeling for TRPV1 and immunogold labeling for GABA.

Studies on the cell cycle of saccharomyces cerevisiae by electron spin resonance spectroscopy (전자스핀공명스펙트럼에 의한 saccharomyces cerevisiae의 세포환 연구)

  • 임형순;강사욱
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 1988
  • The intracellular free radicals produced at different stages of cell cycle of Saccharomyces cerevisiae ATCC 24858 were investigated by means of electron spin resonance(ESR) spectroscopy. The synchronized cells by repeated starvation and refeeding revealed different ESR spectral pattern compared to that of asynchronized cells. Each spectrum centered at g=2.005, which indicates free radicals. The relative spin concentration was maximat at the end of DNA increase. The variation of the relative spin concentration at each distinct stage of the cell cycle was evaluated in relation to ascorbate concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. The highest activities of L-galactonolactone oxidase and ascorbate oxidase were detected just before and at the maximum of relative spin concentration, respectively. And ascorbate concentration fluctuated through each stage of cell cycle with the changes of relative spin concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. Thus it is suggested that intracellular free radicals should be related to cell cycle, interacted with ascorbate, and may play an important role in the cell cycle of Saccharomyces cerevisiae.

  • PDF

Structural characterization and degradation efficiency of degradation products of iopromide by electron beam irradiation (전자선 처리 후 생성된 Iopromide의 분해산물 구조 규명 및 분해 효율)

  • Ham, Hyun-Sun;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.292-299
    • /
    • 2014
  • Iopromide is an X-ray contrast agent that has been detected frequently with high concentration level in surface waters. Structural characterization of degradation products and measurement of degradation efficiency of iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electron beam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structures of I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation of mass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy, and 97.8~30% in the concentration range $0.5{\sim}100{\mu}g/kg$ at electron beam dose of 0.3 kGy, respectively. Thus, increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher dose of electron beam and lower concentration.

Effect of Electron Acceptor on Anaerobic Toluene Biodegradation in Rice Field and Tidal Mud Flat (논과 갯벌에서 톨루엔의 혐기성 생분해에 미치는 전자수용체의 영향)

  • 조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.197-200
    • /
    • 2003
  • In oil-contaminated environments, anaerobic biodegradation of toluene depended on the concentration and distribution of terminal electron acceptor as well as the physicochemical properties such as DO concentration, redox potential and pH. This study showed the anaerobic biodegradation of toluene in two different soils by using nitrate reduction, ferric iron reduction, sulfate reduction and methanogensis. Toluene degradation rates in the soil samples taken from rice filed and tidal mud flat by nitrate reduction were higher than those by other processes. Tho soil samples from the two fields were enriched for 130 days by providing toluene as a sole carbon source and nitrate or sulfate as a terminal electron acceptor. The toluene degradation rates in the enriched denitrifying consortia obtained from the rice field and tidal mud flat soil were 310.7 and 200.6 $\mu$mol$ L^{-1}$ / $d^{-1}$, respectively. The toluene (legradation rates in the enriched sulfate-reducing consortia from the fields ranged fi-om 149.1 to 86.1$\mu$mol $L^{-1}$ / $d^{-1}$ .

Preliminary Study of Bioremediation in Diesel Contaminated Soil (디젤 오염토양의 생물학적 복원에 관한 기초연구)

  • 김선영;권수열;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • The purpose of study is to evaluate the effects of physical parameters on diesel biodegradation in diesel contaminated soil. The parameters applied are concentration, temperature, moisture contents, electron acceptor(O$_2$). The results of this study showed that diesel were degraded faster at high temperature and moisture contents than at low temperature and moisture content. However concentration effect study indicates that diesel were more faster degraded at low concentration than at high concentration. The results of electron acceptor test showed concentration of oxygen did not affect the biodegradation rate of diesel in oxygen condition(10, 20%) of this study.

  • PDF

Effect of Polyphosphates on the Growthof Listeria monocytogenes Scott A (인산염이 Listeria monocytogenes Scott A 성장에 미치는 영향)

  • 장덕화;송재영;김일환
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.205-211
    • /
    • 1995
  • To investigate the antimicrobial effect of polyphosphates as a food additive, the growth and structural change of Listeria monocytogentes Scott A were examined in relation to polyphosphates concentration and incubation temperature. Up to 10,000 ppm of polyphosphates, the growth rate of strain was gradually inhibited with increasing polyphosphates concentration and decreasting the incubation temperature. Minimal inhibitory concentration of polyphosphates to the growth of strain was about 12,000 ppm. It was observed , using both scanning electron microscopy(SEM) and transmission electron microscopy(TEM), that 0.9% polyphosphates treatment was resulted in the destruction of cell wall and outflow of cell ingredients. The antimicrobial effects of polyphosphates were more effective than those of dehydroacetate and potassium sorbate at 13$^{\circ}C$ and 4$^{\circ}C$. The growth rate the strain in beef was significantly inhibited by the treatment of 0.9% polyphosphates and storaged at cooling temperature.

  • PDF

Verification of Calcium Carbonate by Cementation of Silt and Sand Using Bacteria (Bacteria를 이용한 실트와 모래의 고결화에 따른 탄산칼슘 확인)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.53-61
    • /
    • 2012
  • The purpose of this study is to understand the mechanism of cementation of soil induced by bacteria. In order to understand the mechanism of cementation of soft soils treated with bacteria, six types of specimens(Not treated, Normal concentration bacteria treatment, High concentration bacteria treatment, Supernatant high concentration bacteria treatment, Double high concentration bacteria treatment, and 25% Specimen high concentration bacteria treatment) were made. Scanning Electron Microscope (SEM), EDX and X-ray diffraction (XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the normal bacteria concentration treated specimen, a clearer cementation between particles was observed in the 25% specimen high bacteria concentration treated specimen. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil.