Browse > Article
http://dx.doi.org/10.5806/AST.2014.27.6.292

Structural characterization and degradation efficiency of degradation products of iopromide by electron beam irradiation  

Ham, Hyun-Sun (Department of Chemistry, Kyonggi University)
Myung, Seung-Woon (Department of Chemistry, Kyonggi University)
Publication Information
Analytical Science and Technology / v.27, no.6, 2014 , pp. 292-299 More about this Journal
Abstract
Iopromide is an X-ray contrast agent that has been detected frequently with high concentration level in surface waters. Structural characterization of degradation products and measurement of degradation efficiency of iopromide by an electron beam irradiation were performed. For the fortified sample with iopromide, electron beam irradiation (UELV-10-10S, klysotrn, 10 MeV, 1 mA and 10 kW) was performed. The chemical structures of I_D_665 and I_D_663, which are degradation products of iopromide, were proposed by interpretation of mass spectra and chromatograms by LC/ESI-MS/MS. The mass fragmentation pathways of mass spectra in tandem mass spectrometry were also proposed. Iopromide was degraded 30.5~98.4% at dose of 0.3~5 kGy, and 97.8~30% in the concentration range $0.5{\sim}100{\mu}g/kg$ at electron beam dose of 0.3 kGy, respectively. Thus, increased degradation efficiency of iopromide by electron beam irradiation was observed with a higher dose of electron beam and lower concentration.
Keywords
iopromide; electron beam; degradation products; degradation efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. B. Angela, K., Sungpyo and S. A. Diana, Environ. Sci. Technol., 40, 7367-7373 (2006).   DOI   ScienceOn
2 Y. A. Maruthi1, N. L. Das, K. Hossain, K. P. Rawa, K. S. S. Sarma and S. Sabharwal, EJSD, 2, 1-18 (2013).
3 K. Fent, A. A. Weston and D. Caminada, Aquat. Toxicol., 76, 122-159 (2006).   DOI   ScienceOn
4 S. J. Khan and J. E. Ongerth, Chemosphere, 54, 355-367 (2004).   DOI   ScienceOn
5 B. Han, J. Ko, J. Kim, Y. Kim, W. Chung, I. E. Makarov, A. V. Ponomarev and A. K. Pikaev, Radiat. Phys. Chem., 64, 53-59 (2002).   DOI   ScienceOn
6 S. Hea, J. Wanga, L. Yeb, Y. Zhangb and J. Yub, Radiat. Phys. Chem., 105, 104-108 (2014).   DOI   ScienceOn
7 T.-H. Kim, NICE, 27(2), 163-170 (2009).
8 M. Sprehe and S. U. Geissen, ATV-DVWK Schriftenreihe, 18, 257-248 (2000).
9 A. Haib and K. Kummerer, Chemosphere, 62, 294-302 (2006).   DOI   ScienceOn
10 National Institute of Environmental Research, South Korea, Risk of Pharmaceuticals in Environmentals, 14 10 (2010).
11 A. Putschew, U. Miehe, A. S. Tellez and M. Jekel, Water Sci. Technol., 56(11), 159-165 (2007).
12 T. S. Hartmann, R. Lange and H. Schewinfurth, Ecotoxicol. Environ. Saf., 42, 274-281 (1999).   DOI   ScienceOn
13 S. Perez and D. Barcelo, Anal. Bioanal. Chem., 387, 1235-1246 (2007).   DOI
14 A. Boersma, B. Robinson, M. Stehouwer, and M. Troupos, Wyoming Clean Water Plant Tertiary Treatment Project Feasibility Study, 8, Dec (2012).
15 W. Kalsch, Sci. Total Environ., 255, 143-153 (1999).
16 M. Schulz, D. Loffler M. Wagner and T. A. Ternes, Environ. Sci. Techol., 42, 7207-7217 (2008).   DOI   ScienceOn
17 S. Perez, P. Elchhorn, M. D. Cellz and D. S. Aga, Anal. Chem. 78, 1866-1874 (2006).   DOI   ScienceOn
18 M. Gros, C. Cruz-Morato, E. Marco-Urrea, P. Longree, H. Singer, M. Sarra, J. Hollender, T. Vicent, S. Rodriguez-Mozaz and D. Barcelo, Water Res., 60, 228-241 (2014).   DOI   ScienceOn
19 National Institute of Environmental Research, South Korea, A Study and Monitoring of Residual Pharmaceuticals(II), (2009).