Browse > Article
http://dx.doi.org/10.5857/RCP.2014.3.4.81

Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment  

Hirakawa, Kazutaka (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University)
Ito, Yusuke (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University)
Yamada, Takashi (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University)
Okazaki, Shigetoshi (Medical Photonics Research Center, Hamamatsu University School of Medicine)
Publication Information
Rapid Communication in Photoscience / v.3, no.4, 2014 , pp. 81-84 More about this Journal
Abstract
To examine the microenvironmental effect of DNA on the photosensitized reaction, the electron-donor-connecting porphyrin, meso-(9-phenanthryl)-tris(N-methyl-p-pyridinio) porphyrin (Phen-TMPyP), was synthesized. Phen-TMPyP can bind to oligonucleotides with two binding modes, depending on the DNA concentration. The fluorescence lifetime measurement of Phen-TMPyP shows a shorter component than that of the reference porphyrin without the phenanthryl moiety. However, the observed value is much longer than those of previously reported similar types of electron-donor-connecting porphyrins, suggesting that electron-transfer quenching by the phenanthryl moiety is not sufficient. The fluorescence quantum yield of Phen-TMPyP ($5{\mu}M$) decreased with an increase in DNA concentration of up to $5{\mu}M$ base pair (bp), possibly due to self-quenching through an aggregation along the DNA strand, increased with an increase in DNA concentration of more than $5{\mu}M$ bp and reached a plateau. The fluorescence quantum yield of Phen-TMPyP with a sufficient concentration of DNA was larger than that of the reference porphyrin. The singlet oxygen ($^1O_2$) generating activity of Phen-TMPyP was confirmed by the near-infrared emission spectrum measurement. The quantum yield of $^1O_2$ generation was decreased by a relatively small concentration of DNA, possibly due to the aggregation of Phen-TMPyP, and recovered with a sufficient concentration of DNA. The recovered quantum yield was rather smaller than that without DNA, indicating the quenching of $^1O_2$ by DNA. These results show that a DNA strand can stabilize the photoexcited state of a photosensitizer and, in a certain case, suppresses the $^1O_2$ generation.
Keywords
Porphyrin; Phenanthrene; DNA; Photosensitizer; Singlet oxygen; Electron transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380-387.   DOI   ScienceOn
2 Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat. Rev. Cancer 2006, 6, 535-545.   DOI   ScienceOn
3 Wilson, B. C.; Patterson, M. S. Phys. Med. Biol. 2008, 53, R61-R109.   DOI   ScienceOn
4 Lang, K.; Mosinger, J.; Wagnerovia, D. M. Coordination Chem. Rev. 2004, 248, 321-350.   DOI   ScienceOn
5 Hirakawa, K.; Hirano, T.; Nishimura, Y.; Arai, T.; Nosaka, Y. Photochem. Photobiol. 2011, 87, 833-839.   DOI
6 Hirakawa, K.; Harada, M.; Okazaki, S.; Nosaka, Y. Chem. Commun. 2012, 48, 4770-4772.   DOI
7 Hirakawa, K.; Nishimura, Y.; Arai, T.; Okazaki, S. J. Phys. Chem. B 2013, 117, 13490-13496.   DOI
8 Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417-2424.   DOI   ScienceOn
9 Kim, Y. R.; Gong, L.; Park, J.; Jang, Y. J.; Kim, J.; Kim, S. K. J. Phys. Chem. B 2012, 116, 2330-2337.   DOI
10 Gong, L.; Bae, I.; Kim, S. K. J. Phys. Chem. B 2012, 116, 12510-12521.
11 Hirakawa, K.; Nakajima, S. Recent Adv. DNA and Gene Seq. 2014, 8, 35-43.
12 Yoshimi, Y.; Hayashi, S.; Nishikawa, K.; Haga, Y.; Maeda, K.; Morita, T.; Itou, T.; Okada, Y.; Ichinose, N.; Hatanaka, M. Molecules 2010, 15, 2623-2630.   DOI
13 Kalyanasundaram, K.; Neumann-Spallart, M. J. Phys. Chem. 1982, 86, 5163-5169.   DOI
14 Lewis, F. D.; Wu, Y. J. Photochem. Photobiol. C: Photochemistry Rev. 2001, 2, 1-16.   DOI
15 Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541-5553.   DOI   ScienceOn
16 Usui, Y.; Kamogawa, K. Photochem. Photobiol. 1974, 19, 245-247.   DOI
17 Petroselli, G.; Erra-Balsells, R.; Cabrerizo, F. M.; Lorente, C.; Capparelli, A. L.; Braun, A. M.; Oliveros, E.; Thomas, A. H. Org. Biomol. Chem. 2007, 5, 2792-2799.
18 Petroselli, G.; Dántola, M. L.; Cabrerizo, F. M.; Capparelli, A. L.; Lorente, C.; Oliveros, E.; Thomas, A. H. J. Am. Chem. Soc. 2008, 130, 3001-3011.   DOI   ScienceOn