DOI QR코드

DOI QR Code

Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment

  • Hirakawa, Kazutaka (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University) ;
  • Ito, Yusuke (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University) ;
  • Yamada, Takashi (Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University) ;
  • Okazaki, Shigetoshi (Medical Photonics Research Center, Hamamatsu University School of Medicine)
  • Received : 2014.12.23
  • Accepted : 2014.12.28
  • Published : 2014.12.31

Abstract

To examine the microenvironmental effect of DNA on the photosensitized reaction, the electron-donor-connecting porphyrin, meso-(9-phenanthryl)-tris(N-methyl-p-pyridinio) porphyrin (Phen-TMPyP), was synthesized. Phen-TMPyP can bind to oligonucleotides with two binding modes, depending on the DNA concentration. The fluorescence lifetime measurement of Phen-TMPyP shows a shorter component than that of the reference porphyrin without the phenanthryl moiety. However, the observed value is much longer than those of previously reported similar types of electron-donor-connecting porphyrins, suggesting that electron-transfer quenching by the phenanthryl moiety is not sufficient. The fluorescence quantum yield of Phen-TMPyP ($5{\mu}M$) decreased with an increase in DNA concentration of up to $5{\mu}M$ base pair (bp), possibly due to self-quenching through an aggregation along the DNA strand, increased with an increase in DNA concentration of more than $5{\mu}M$ bp and reached a plateau. The fluorescence quantum yield of Phen-TMPyP with a sufficient concentration of DNA was larger than that of the reference porphyrin. The singlet oxygen ($^1O_2$) generating activity of Phen-TMPyP was confirmed by the near-infrared emission spectrum measurement. The quantum yield of $^1O_2$ generation was decreased by a relatively small concentration of DNA, possibly due to the aggregation of Phen-TMPyP, and recovered with a sufficient concentration of DNA. The recovered quantum yield was rather smaller than that without DNA, indicating the quenching of $^1O_2$ by DNA. These results show that a DNA strand can stabilize the photoexcited state of a photosensitizer and, in a certain case, suppresses the $^1O_2$ generation.

Keywords

References

  1. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3, 380-387. https://doi.org/10.1038/nrc1071
  2. Castano, A. P.; Mroz, P.; Hamblin, M. R. Nat. Rev. Cancer 2006, 6, 535-545. https://doi.org/10.1038/nrc1894
  3. Wilson, B. C.; Patterson, M. S. Phys. Med. Biol. 2008, 53, R61-R109. https://doi.org/10.1088/0031-9155/53/9/R01
  4. Lang, K.; Mosinger, J.; Wagnerovia, D. M. Coordination Chem. Rev. 2004, 248, 321-350. https://doi.org/10.1016/j.ccr.2004.02.004
  5. Hirakawa, K.; Hirano, T.; Nishimura, Y.; Arai, T.; Nosaka, Y. Photochem. Photobiol. 2011, 87, 833-839. https://doi.org/10.1111/j.1751-1097.2011.00929.x
  6. Hirakawa, K.; Harada, M.; Okazaki, S.; Nosaka, Y. Chem. Commun. 2012, 48, 4770-4772. https://doi.org/10.1039/c2cc30880k
  7. Hirakawa, K.; Nishimura, Y.; Arai, T.; Okazaki, S. J. Phys. Chem. B 2013, 117, 13490-13496. https://doi.org/10.1021/jp4072444
  8. Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417-2424. https://doi.org/10.1021/ja044555w
  9. Kim, Y. R.; Gong, L.; Park, J.; Jang, Y. J.; Kim, J.; Kim, S. K. J. Phys. Chem. B 2012, 116, 2330-2337. https://doi.org/10.1021/jp212291r
  10. Gong, L.; Bae, I.; Kim, S. K. J. Phys. Chem. B 2012, 116, 12510-12521.
  11. Hirakawa, K.; Nakajima, S. Recent Adv. DNA and Gene Seq. 2014, 8, 35-43.
  12. Yoshimi, Y.; Hayashi, S.; Nishikawa, K.; Haga, Y.; Maeda, K.; Morita, T.; Itou, T.; Okada, Y.; Ichinose, N.; Hatanaka, M. Molecules 2010, 15, 2623-2630. https://doi.org/10.3390/molecules15042623
  13. Kalyanasundaram, K.; Neumann-Spallart, M. J. Phys. Chem. 1982, 86, 5163-5169. https://doi.org/10.1021/j100223a022
  14. Lewis, F. D.; Wu, Y. J. Photochem. Photobiol. C: Photochemistry Rev. 2001, 2, 1-16. https://doi.org/10.1016/S1389-5567(01)00008-9
  15. Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541-5553. https://doi.org/10.1021/jp951507c
  16. Usui, Y.; Kamogawa, K. Photochem. Photobiol. 1974, 19, 245-247. https://doi.org/10.1111/j.1751-1097.1974.tb06506.x
  17. Petroselli, G.; Dántola, M. L.; Cabrerizo, F. M.; Capparelli, A. L.; Lorente, C.; Oliveros, E.; Thomas, A. H. J. Am. Chem. Soc. 2008, 130, 3001-3011. https://doi.org/10.1021/ja075367j
  18. Petroselli, G.; Erra-Balsells, R.; Cabrerizo, F. M.; Lorente, C.; Capparelli, A. L.; Braun, A. M.; Oliveros, E.; Thomas, A. H. Org. Biomol. Chem. 2007, 5, 2792-2799.

Cited by

  1. Relaxation Process of Photoexcitedmeso-Naphthylporphyrins while Interacting with DNA and Singlet Oxygen Generation vol.119, pp.41, 2015, https://doi.org/10.1021/acs.jpcb.5b08025