• Title/Summary/Keyword: electron carrier

Search Result 515, Processing Time 0.026 seconds

Growth and Characterization of $CuInTe_2$ Single Crystal thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE) 방법에 의한 $CuInTe_2$ 단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;이관교;이상열;유상하;정준우;정경아;백형원;방진주;신영진
    • Korean Journal of Crystallography
    • /
    • v.11 no.4
    • /
    • pp.212-223
    • /
    • 2000
  • A stochiometric mix of CuInTe₂ polycrystal was prepared in a honizonatal furnace. To obtain the single crystal thin films, CuInTe₂ mixed crystal was deposited on throughly etched GaAs(100) by the HWE system. The source and substrate temperatures were 610℃ and 450℃ respectively, and the thickness of the deposited single crystal thin film was 2.4㎛. CuInTe₂ single crystal thin film was proved to be the optimal growth condition when the excition emission spectrum was the strongest at 1085.3 nm(1.1424 eV) of photoluminescence spectrum at 10 K, and also FWHM of Double Crystal X-ray Rocking Curve (DCRC) was the smallest, 129 arcsec. The Hall effect on this sample was measured by the method of Van der Pauw, and the carrier density and mobility dependent on temperature were 9.57x10/sup 22/ electron/㎥, 1.31x10/sup -2/㎡/V·s at 293 K, respectively. The ΔCr(Crystal field splitting) and the ΔSo (spin orbit coupling splitting( measured at f10K from the photocurrent peaks in the short wavelength of the CuInTe₂ single crystal thin film were about 0.1200 eV, 0.2833 eV respectively. From the PL spectra of CuInTe₂ single crystal thin film at 10 K, the free exciton (E/sub x/) was determined to be 1064.5 nm(1.1647 eV) and the donor-bound exciton(D/sup 0/, X) and acceptor-bound exciton (A/sup 0/, X) were determined to be 1085.3 nm(1.1424 eV) and 1096.8 nm(1.1304 eV0 respectively. And also, the donor-acciptor pair (DAP)P/sub 0/, DAP-replica P₁, DAP-replica P₂ and self-activated (SA) were determined to be 1131 nm (1.0962 eV), 1164 nm(1.0651 eV), 1191.1 nm(1.0340 eV) and 1618.1 nm (0.7662 eV), respectively.

  • PDF

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics

  • Woo, Jeong Wook;Baek, SeungBong;Song, Tae Kwon;Lee, Myang Hwan;Rahman, Jamil Ur;Kim, Won-Jeong;Sung, Yeon Soo;Kim, Myong-Ho;Lee, Soonil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.

The Temperature- and Field-dependent Impact ionization Coefficient for Silicon using Monte Carlo Simulation (Monte Carlo 시뮬레이션을 이용한 Si 임팩트이온화계수의 온도 및 전계 특성)

  • 유창관;고석웅;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.451-454
    • /
    • 2000
  • The impact ionization(I.I.) is necessary to analyze carrier transport properties under the influence of high electric field. The full band I-k relation and Fermi's golden rule are used for the calculation of impact ionization rate. We have investigated the temperature- and field-dependent impact ionization coefficient for silicon using full band Monte Carlo simulation. The impact ionization coefficients calculated by our impact ionization model are agreed with experimental data at look. We know that impact ionization coefficients and electron energies are decreasing along increasing temperature due to increase of phonon scattering, especially by emission. The logarithm of impact ionization coefficients are fitted to linear function for temperature and field. The residuals of linear function are within the error bound of 5%. We know logarithmic impact ionization coefficients are linearly dependent on temperature and field.

  • PDF

The Evaluation for Reliability Characteristics of MOS Devices with Different Gate Materials by Plasma Etching Process (게이트 물질을 달리한 MOS소자의 플라즈마 피해에 대한 신뢰도 특성 분석)

  • 윤재석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.297-305
    • /
    • 2000
  • It is observed that the initial properties and degradation characteristics on plasma of n/p-MOSFET with polycide and poly-Si as different gate materials under F-N stress and hot electron stress are affected by metal AR(Antenna Ratio) during plasma process. Compared to that of MOS devices with poly-Si gate material, reliability properties on plasma of MOS devices with polycide gate material are improved. This can be explained by that fluorine of tungsten polycide process diffuses through poly-Si into gate oxide and results in additional oxide thickness. The fact that MOS devices with polycide gate material can reduce damages of plasma process shows possibility that polycide gate material can be used as gate material for next generation MOS devices.

  • PDF

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Self-organized Pullulan/Deoxycholic Acid Nanogels: Physicochemical Characterization and Anti-cancer Drug-releasing Behavior

  • Na, Kun;Park, Kyong-Mi;Jo, Eun-Ae;Lee, Kwan-Shik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer. Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and the carboxyl group in DOCA. Three types of PUL/DOCA conjugates were obtained, differing in the number of DOCA substitutions (DS; 5, 8, or 11) per 100 PUL anhydroglucose units. The physicochemical properties of the resulting nanogels were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of DS 11 was the smallest (approx. 100 nm), and the size distribution was unimodal. To determine the organizing behavior of these conjugates, we calculated their critical aggregation concentrations (CACs) in a 0.01-M phosphate buffered saline solution. They were $10.5{\times}10^{-4}mg/mL,\;7.2{\times}10^{-4} mg/mL,\;and\;5.6{\times}10^{-4} mg/mL$ for DS 5, 8, and 11, respectively. This indicates that DOCA can serve as a hydrophobic moiety to create self-organized nanogels. To monitor the drug-releasing behavior of these nanogels, we loaded doxorubicin (DOX) onto the conjugates. The DOX-loading efficiency increased with the degree of DOCA substitution. The release rates of DOX from PUL/DOCA nanogels varied inversely with the DS. We concluded that the PUL/DOCA nanogel has some potential for use as an anticancer drug carrier because of its low CAC and satisfactory drug-loading capacity.

Decomposition of Chlorinated Methane by Thermal Plasma (열플라즈마에 의한 클로로메탄의 분해)

  • Kim, Zhen Shu;Park, Dong Wha
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2007
  • The decomposition of chlorinated methanes including $CCl_4$, $CCl_3H$, and $CCl_2H_2$ was carried out using a thermal plasma process and the characteristics of the process were investigated. The thermal equilibrium composition was analyzed with temperature by Fcatsage program. The decomposition rates at various process parameters including the concentration of reactants, flow rate of carrier gas, and quenching rate, were evaluated, where sufficiently high conversion over 92% was achieved. The generation of main products was strongly influenced by the reaction atmosphere; carbon, chlorine, and hydrogen chloride at neutral condition; carbon dioxide, chlorine, and hydrogen chloride at oxidative condition. The decomposition mechanism was speculated considering the results from Factsage and the identification of generated radicals and ionic species. The main decomposition pathways were found to be dissociative electron attachment and oxidative by radicals formed in a plasma state.

Effect of Oxidation-reduction Pretreatment for the Hydrogenation of Caster Oil over Ni/SiO2 Catalyst (산화-환원 전처리에 따른 Ni/SiO2 촉매의 캐스터오일 수소화)

  • Choi, Yi Sun;Kim, Soo Young;Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.326-331
    • /
    • 2017
  • Castor oil can be used as a useful raw material for chemical industries such as intermediates of surfactants through hydrogenation reaction. In this study, effects of the preparation method and pretreatment condition on the nickel catalyst for the hydrogenation of castor oil were investigated. The nickel catalyst was supported on the silica carrier by the precipitation method with different Ni contents, solution pH values, and precipitants. Repeated pretreatments of oxidation and reduction cycles were then carried out. The activity of the nickel catalyst was measured by comparing the iodine value of the castor oil. The dispersion of nickel on the catalyst was analyzed by X-ray diffraction (XRD), $N_2$ adsorption-desorption, and transmission electron microscopy (TEM). The activity of nickel catalyst was also compared by CO oxidation experiments. The redispersion of nickel occurred on the silica by repeated oxidation and reduction cycles, and this effect contributed to promoting the castor oil hydrogenation activity.

Femto-second Laser Ablation Process for Si Wafer Through-hole (펨토초 레이저 어블레이션을 이용한 Si 웨이퍼의 미세 관통 홀 가공)

  • Kim, Joo-Seok;Sim, Hyung-Sub;Lee, Seong-Hyuk;Shin, Young-Eui
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2007
  • The main objectives of this study are to investigate the micro-scale energy transfer mechanism for silicon wafer and to find an efficient way for fabrication of silicon wafer through-hole by using the femtosecond pulse laser ablation. In addition, the electron-phonon interactions during laser irradiation are discussed and the carrier number density and temperatures are estimated. In particular, the present study observes the shapes of silicon wafer through-hole with $100\;{\mu}m$ diameter and it also measures the heat-affected area and the ablation depths fur different laser fluences by using the optic microscope and the three-dimensional profile measurement technique. First, from numerical investigation, it is found that the nonequilibrium state exists between electrons and phonons during laser irradiation. From experimental results, it should be noted that the heat-affected area increases with laser fluence, and the optimal conditions for through-hole formation with minimum heat affected zone are finally obtained.

  • PDF

Comparative analysis of carrier systems for delivering bone morphogenetic proteins

  • Jung, Im-Hee;Lim, Hyun-Chang;Lee, Eun-Ung;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.4
    • /
    • pp.136-144
    • /
    • 2015
  • Purpose: The objective of this study was to comparatively assess the bone regenerative capacity of absorbable collagen sponge (ACS), biphasic calcium phosphate block (BCP) and collagenated biphasic calcium phosphate (CBCP) loaded with a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). Methods: The CBCP was characterized by X-ray diffraction and scanning electron microscopy. In rabbit calvaria, four circular 8-mm-diameter defects were created and assigned to one of four groups: (1) blood-filled group (control), (2) rhBMP-2-soaked absorbable collagen sponge (0.05 mg/mL, 0.1 mL; CS group), (3) rhBMP-2-loaded BCP (BCP group), or (4) rhBMP-2-loaded CBCP (CBCP group). The animals were sacrificed either 2 weeks or 8 weeks postoperatively. Histological and histomorphometric analyses were performed. Results: The CBCP showed web-like collagen fibrils on and between particles. Greater dimensional stability was observed in the BCP and CBCP groups than in the control and the CS groups at 2 and 8 weeks. The new bone formation was significantly greater in the BCP and CBCP groups than in the control and CS groups at 2 weeks, but did not significantly differ among the four groups at 8 week. The CBCP group exhibited more new bone formation in the intergranular space and in the center of the defect compared to the BCP group at 2 weeks, but a similar histologic appearance was observed in both groups at 8 weeks. Conclusions: The dose of rhBMP-2 in the present study enhanced bone regeneration in the early healing period when loaded on BCP and CBCP in rabbit calvarial defects.