Browse > Article
http://dx.doi.org/10.4191/kcers.2017.54.4.04

Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics  

Woo, Jeong Wook (School of Advanced Materials Engineering, Changwon National University)
Baek, SeungBong (School of Advanced Materials Engineering, Changwon National University)
Song, Tae Kwon (School of Advanced Materials Engineering, Changwon National University)
Lee, Myang Hwan (School of Advanced Materials Engineering, Changwon National University)
Rahman, Jamil Ur (School of Advanced Materials Engineering, Changwon National University)
Kim, Won-Jeong (Department of Physics, Changwon National University)
Sung, Yeon Soo (Department of Materials and Engineering, Pohang University of Science and Technology)
Kim, Myong-Ho (School of Advanced Materials Engineering, Changwon National University)
Lee, Soonil (Energy and Environmental Materials Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Abstract
To understand the defect chemistry of multiferroic $BiFeO_3-based$ systems, we synthesized nonstoichiometric $Bi_{1+x}FeO_{3{\pm}{\delta}}$ ceramics by conventional solid-state reaction method and studied their structural, dielectric and high-temperature charge transport properties. Incorporation of an excess amount of $Bi_2O_3$ lowered the Bi deficiency in $BiFeO_3$. Polarization versus electric field (P-E) hysteresis loop and dielectric properties were found to be improved by the $Bi_2O_3$ addition. To better understand the defect effects on the multiferroic properties, the high temperature equilibrium electrical conductivity was measured under various oxygen partial pressures ($pO_2{^{\prime}}s$). The charge transport behavior was also examined through thermopower measurement. It was found that the oxygen vacancies contribute to high ionic conduction, showing $pO_2$ independency, and the electronic carrier is electron (n-type) in air and Ar gas atmospheres.
Keywords
Bismuth ferrite; Ferroelectric; Electrical conductivity; Defect; Nonstoichiometry;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, "First-Principles Study of Spontaneous Polarization in Multiferroic $BiFeO_3$," Phys. Rev. B, 71 [1] 014113 (2005).   DOI
2 Z. Zhang, P. Wu, L. Chen, and J. Wang, "Density Functional Theory Plus U Study of Vacancy Formations in Bismuth Ferrite," Appl. Phys. Lett., 96 [23] 232906 (2010).   DOI
3 S. Guilin, S. Jian, N. Zhang, and C. Fanggao, "Effects of Oxgen Content on the Electric and Magnetic Properties of $BiFeO_3$ Compound," Phys. B, 493 47-52 (2016).   DOI
4 S. M. Selbach, M.-A. Einarsrud, and T. Grande, "On the Thermodynamic Stability of $BiFeO_3$," Chem. Mater., 21 [1] 169-73 (2009).   DOI
5 S. M. Selbach, T. Tybell, M.-A. Einarsrud, and T. Grande, "Phase Transitions, Electrical Conductivity and Chemical Stability of $BiFeO_3$ at High Temperatures," J. Solid State Chem., 183 [5] 1205-8 (2010).   DOI
6 Z. Dai and Y. Akishige, "Electrical Properties of Multiferroic $BiFeO_3$ Ceramics Synthesized by Spark Plasma Sintering," J. Phys. D: Appl. Phys., 43 [44] 445403 (2010).   DOI
7 A. Perejon, N. Maso, A. R. West, P. E. Sanchez-Jimenez, R. Poyato, J. M. Criado, and L. A. Perez-Maqueda, "Electrical Properties of Stoichiometric $BiFeO_3$ Prepared by Mechanosynthesis with Either Conventional or Spark Plasma Sintering," J. Am. Ceram. Soc., 96 [4] 1220-27 (2013).   DOI
8 N. Jeon, K.-S. Moon, D. Rout, and S.-J. L. Kang, "Enhanced Sintering Behavior and Electrical Properties of Single Phase $BiFeO_3$ Prepared by Attrition Milling and Conventional Sintering," J. Korean Ceram. Soc., 49 [6] 485-92 (2012).   DOI
9 D. Rout, K.-S. Moon, and S.-J. L. Kang, "Temperature-Dependent Raman Scattering Studies of Polycrystalline $BiFeO_3$ Bulk Ceramics," J. Raman Spectrosc., 40 [6] 618-26 (2009).   DOI
10 R.-Q. Yin, B.-W. Dai, P. Zheng, J.-J. Zhou, W.-F. Bai, F. Wen, J.-X. Deng, L. Zheng, J. Du, and H.-B. Qin, "Pure-Phase $BiFeO_3$ Ceramics with Enhanced Electrical Properties Prepared by Two-Step Sintering," Ceram. Int., 43 [8] 6467-71 (2017).   DOI
11 N. Maso and A. R. West, "Electrical Properties of Ca-Doped $BiFeO_3$ Ceramics: From p-Type Semiconduction to Oxide-Ion Conduction," Chem. Matter., 24 [11] 2127-32 (2012).   DOI
12 G. Arya, R. K. Kotnala, and N. S. Negi, "A Novel Approach to Improve Properties of $BiFeO_3$ Nanomultiferroics," J. Am. Ceram. Soc., 97 [5] 1475-80 (2014).   DOI
13 J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I. C. Infante, and B. Dkhil, "Crystal Structure, Leakage Conduction Mechanism Evolution and Enhanced Multiferroic Properties in Y-doped $BiFeO_3$ Ceramics," Ceram. Int., 42 [12] 13395-403 (2016).   DOI
14 K. Abe, N. Sakai, J. Takahashi, H. Itoh, N. Adachi, and T. Ota, "Leakage Current Properties of Cation-Substituted $BiFeO_3$ Ceramics," Jpn. J. Appl. Phys., 49 [9S] 09MB01 (2010).
15 H. Han, I. Hong, Y. Kong, J. Lee, and W. Jo, "Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free $0.94(Bi_{1/2}Na_{1/2})TiO_3-0.06BaTiO_3$ Ceramics," J. Korean Ceram. Soc., 53 [2] 145-49 (2016).   DOI
16 M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M.-H. Kim, W.-J. Kim, D. Do, and I.-K. Jeong, "High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27 [43] 6976-82 (2015).   DOI
17 K. T. Lee, J. S. Park, J. H. Cho, Y. H. Jeong, J. H. Paik, and J. S. Yun, "The Study on the Phase Transition and Piezoelectric Properties of $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-LaMnO_3$ Lead-Free Piezoelectric Ceramics," J. Korean Ceram. Soc., 52 [4] 237-42 (2015).   DOI
18 J. Kim, I. Seo, J. Hur, D. Kim, and S. Nahm, "Effect of $MnO_2$ Addition on Microstructure and Piezoelectric Properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ Piezoelectric Ceramics," J. Korean Ceram. Soc., 53 [2] 129-33 (2016).   DOI
19 L. W. Martin, S. P. Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, N. Balke, and R. Ramesh, "Multiferroics and Magnetoelectrics: Thin Films and Nanostructures," J. Phys.: Condens. Matter., 20 [43] 434220 (2008).   DOI
20 H.-G. Yeo, T.-K. Song, Y.-S. Sung, J.-H. Cho, H.-M. Lee, and M.-H. Kim, "Effects of Nb Substitution on the Leakage Currents and the Electrical Properties of Ceramics," New Phys.: Sae Mulli., 56 [3] 278-82 (2008).
21 T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J. L. Jones, J. E. Daniels, and D. Damjanovic, "$BiFeO_3$ Ceramics: Processing, Electrical, Electromechanical Properties," J. Am. Ceram. Soc., 97 [7] 1993-2011 (2014).   DOI
22 S. J. Clacrk and J. Robertson, "Energy Levels of Oxygen Vacancies in $BiFeO_3$ by Screened Exchange," Appl. Phys. Lett., 94 [2] 022902 (2009).   DOI
23 H.-Y. Su and K. Sun, "DFT Study of Stability of Oxygen Vacancy in Cubic $ABO_3$ Perovskites," J. Mater. Sci., 50 [4] 1701-9 (2015).   DOI
24 G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7 [2] 105-14 (2008).   DOI
25 X.-Z. Chen, R.-L. Yang, J.-P. Zhou, X.-M. Chen, Q. Jiang, and P. Liu, "Dielectric and Magnetic Properties of Multiferroic $BiFeO_3$ Ceramics Sintered with the Powders Prepared by Hydrothermal Method," Solid State Sci., 19 117-21 (2013).   DOI
26 W. L. Warren, K. Vanheusden, D. Dimos, G. E. Pike, and B. A. Tuttle, "Oxygen Vacancy Motion in Perovskite Oxides," J. Am. Ceram. Soc., 79 [2] 536-38 (1996).   DOI