• Title/Summary/Keyword: electrolytic material

Search Result 137, Processing Time 0.026 seconds

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode

  • Kim, Sung-Wook;Heo, Dong Hyun;Lee, Sang Kwon;Jeon, Min Ku;Park, Wooshin;Hur, Jin-Mok;Hong, Sun-Seok;Oh, Seung-Chul;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1451-1456
    • /
    • 2017
  • Finding technical issues associated with equipment scale-up is an important subject for the investigation of pyroprocessing. In this respect, electrolytic reduction of 1 kg $UO_2$, a unit process of pyroprocessing, was conducted using graphite as an anode material to figure out the scale-up issues of the C anode-based system at pilot scale. The graphite anode can transfer a current that is 6-7 times higher than that of a conventional Pt anode with the same reactor, showing the superiority of the graphite anode. $UO_2$ pellets were turned into metallic U during the reaction. However, several problems were discovered after the experiments, such as reaction instability by reduced effective anode area (induced by the existence of $Cl_2$ around anode and anode consumption), relatively low metal conversion rate, and corrosion of the reactor. These issues should be overcome for the scale-up of the electrolytic reducer using the C anode.

Study on the Evaporation Behaviour of Electrolytic Manganese Melt Under Reduced Pressure (감압 하에서 전해 망간 용탕의 증발거동에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;Wi, Chang-Hyun;Shin, Dong-Yub;You, Byung-Don;Seo, Seong-Mo;Park, Jong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.828-833
    • /
    • 2009
  • As a fundamental study in the development of a distillation process for ferromanganese alloy melts, the evaporation behavior of an electrolytic manganese melt under reduced pressure was investigated. The melt temperature, vacuum degree, surface area of the melt, and reaction time were considered as experimental variables. The amount of vaporized manganese increases linearly as the reaction time increases, and the evaporation of manganese was promoted by increasing the temperature and surface area of the melt. In the pressure range below the equilibrium vapor pressure of manganese, the amount of vaporized manganese per unit surface area of the melt increased sharply with a decrease of the pressure in the reaction chamber. An empirical equation for the evaporation rate of manganese was derived by regression analysis. The evaporation coefficient of manganese was determined to be approximately $3.84{\times}10^{-3}(g{\cdot}K^{1/2})/(Pa{\cdot}cm^2{\cdot}min)$ under the investigated conditions.

Development of 121 pins/mm2 High Density Probe Card using Micro-spring Architecture (마이크로 스프링 구조를 갖는 121 pins/mm2 고밀도 프로브 카드 제작기술)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.749-755
    • /
    • 2007
  • Recently, novel MEMS probe cards can support reliable wafer level chip test with high density probing capacity. However, manufacturing cost and process complexity are crucial weak points for low cost mass production. To overcome these limitations, we have developed micro spring structured MEMS probe card. For fabrication of micro spring module, a wire bonder and electrolytic polished gold wires are used. In this case, stringent tension force control is essential to guarantee the low level contact resistance of micro spring for reliable probing performance. For this, relation between tension force of fabricated probe card and contact resistance is characterized. Compare to conventional probe cards, developed MEMS probe card requires fewer fabrication steps and it can be manufactured with lower cost than other MEMS probe cards. Also, due to the small contact scratch patterns, we expect that it can be applied to bumping types chip test which require higher probing density.

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration (NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.814-819
    • /
    • 2010
  • Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.

A Study of the fracture of intermetallic layer in electroless Ni/Au plating (무전해 니켈/금도금에서의 내부 금속층의 결함에 대한 연구)

  • 박수길;정승준;김재용;엄명헌;엄재석;전세호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.708-711
    • /
    • 1999
  • The Cu/Ni/Au lamellar structure is extensively used as an under bump metallization on silicon file, and on printed circuit board(PCB) pads. Ni is plated Cu by either electroless Ni plating, or electrolytic Ni plating. Unlike the electrolytic Ni plating, the electroless Ni plating does not deposit pure Ni, but a mixture of Ni and phosphorous, because hypophosphite Is used in the chemical reaction for reducing Ni ions. The fracture crack extended at the interface between solder balls of plastic ball grid (PBGA) package and conducting pads of PCB. The fracture is duets to segregation at the interface between Ni$_3$Sn$_4$intermetallic and Ni-P layer. The XPS diffraction results of Cu/Ni/Au results of CU/Ni/AU finishs showed that the Ni was amorphous with supersaturated P. The XPS and EDXA results of the fracture surface indicated that both of the fracture occurred on the transition lesion where Sn, P and Ni concentrations changed.

  • PDF

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds in a Neutral Salt Electrolyte

  • Park, W. K.;Y. M. Yang;C. H. Jung;H. J. Won;W. Z. Oh;Park, J. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.689-695
    • /
    • 2003
  • Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as $UO_2$, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate(UN) with tributylphosphate(TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral salt electrolytes. The effects of type of neutral salt as the electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components.

  • PDF