Browse > Article
http://dx.doi.org/10.1016/j.net.2017.05.004

A preliminary study of pilot-scale electrolytic reduction of UO2 using a graphite anode  

Kim, Sung-Wook (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Heo, Dong Hyun (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Lee, Sang Kwon (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Jeon, Min Ku (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Park, Wooshin (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Hong, Sun-Seok (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Oh, Seung-Chul (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Choi, Eun-Young (Pyroprocessing Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.49, no.7, 2017 , pp. 1451-1456 More about this Journal
Abstract
Finding technical issues associated with equipment scale-up is an important subject for the investigation of pyroprocessing. In this respect, electrolytic reduction of 1 kg $UO_2$, a unit process of pyroprocessing, was conducted using graphite as an anode material to figure out the scale-up issues of the C anode-based system at pilot scale. The graphite anode can transfer a current that is 6-7 times higher than that of a conventional Pt anode with the same reactor, showing the superiority of the graphite anode. $UO_2$ pellets were turned into metallic U during the reaction. However, several problems were discovered after the experiments, such as reaction instability by reduced effective anode area (induced by the existence of $Cl_2$ around anode and anode consumption), relatively low metal conversion rate, and corrosion of the reactor. These issues should be overcome for the scale-up of the electrolytic reducer using the C anode.
Keywords
Anode; Carbon; Electrolytic Reduction; Pilot Scale; Pyroprocessing; Spent Fuel;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H.-S. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E.-H. Kim, Pyroprocessing technology development at KAERI, Nucl. Eng. Technol. 43 bm (2011) 317-328.   DOI
2 H. Ohta, T. Inoue, Y. Sakamura, K. Kinoshita, Pyroprocessing of light water reactor spent fuels based on an electrochemical reduction technology, Nucl. Technol. 150 (2005) 153-161.   DOI
3 T. Inoue, L. Koch, Development of pyroprocessing and its future direction, Nucl. Eng. Technol. 40 (2008) 183-190.   DOI
4 J.-M. Hur, S.M. Jeong, H.S. Lee, Underpotential deposition of Li in a molten $LiCl-Li_2O$ electrolyte for the electrochemical reduction of U from uranium oxides, Electrochem. Commun. 12 (2010) 706-709.   DOI
5 S.M. Jeong, H.-S. Shin, S.-H. Cho, J.-M. Hur, H.S. Lee, Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt, Electrochim. Acta 54 (2009) 6335-6340.   DOI
6 Y. Sakamura, T. Omori, T. Inoue, Application of electrochemical reduction to produce metal fuel material from actinide oxides, Nucl. Technol. 162 (2008) 169-178.   DOI
7 Y. Sakamura, T. Omori, Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels, Nucl. Technol. 171 (2010) 266-275.   DOI
8 S.-W. Kim, E.-Y. Choi, W. Park, H.S. Im, J.-M. Hur, TiN anode for electrolytic reduction of $UO_2$ in pyroprocessing, J. Nucl. Fuel Cycle Waste Technol. 13 (2015) 229-233.   DOI
9 Y. Sakaumra, M. Iizuka, Applicability of nickel ferrite anode to electrolytic reduction of metal oxides in $LiCl-Li_2O$ melt at 923 K, Electrochim. Acta 189 (2016) 74-82.   DOI
10 S.-W. Kim, E.-Y. Choi, W. Park, H.S. Im, J.-M. Hur, A conductive oxide as an $O_2$ evolution anode for the electrolytic reduction of metal oxides, Electrochem. Commun. 55 (2015) 14-17.   DOI
11 A. Merwin, D. Chidambaram, Alternative anodes for the electrolytic reduction of $UO_2$, Metall. Mater. Trans. A 46 (2015) 536-544.   DOI
12 S.-W. Kim, W. Park, H.S. Im, J.-M. Hur, S.-S. Hong, S.-C. Oh, E.-Y. Choi, Electrochemical behavior of liquid Sb anode system for electrolytic reduction of $UO_2$, J. Radioanal. Nucl. Chem. 303 (2015) 1041-1046.   DOI
13 S.-W. Kim, S.-K. Lee, H.W. Kang, E.-Y. Choi, W. Park, S.-S. Hong, S.-C. Oh, J.-M. Hur, Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxides, J. Radioanal. Nucl. Chem. 311 (2017) 809-814.   DOI
14 H.Y. Ryu, S.M. Jeong, Y.C. Kang, J.-G. Kim, Electrochemical carbon formation from a graphite anode in $LiCl-Li_2O$ molten salt, Asian J. Chem. 25 (2013) 7019-7022.
15 J.-M. Hur, J.-S. Cha, E.-Y. Choi, Can carbon be an anode for electrochemical reduction in a $LiCl-Li_2O$ molten salt? ECS Electrochem. Lett. 3 (2014) E5-E7.   DOI
16 S.-W. Kim, M.K. Jeon, H.W. Kang, S.-K. Lee, E.-Y. Choi, W. Park, S.-S. Hong, S.-C. Oh, J.-M. Hur, Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing, J Radional. Nucl. Chem. 310 (2016) 463-467.   DOI
17 T. Biju Joseph, N. Sanil, K.S. Mohandas, K. Nagarajan, A study of graphite as anode in the electro-deoxidation of solid $UO_2$ in $LiCl-Li_2O$ melts, J. Electrochem. Soc. 162 (2015) E51-E58.   DOI
18 E.-Y. Choi, J. Lee, M.K. Jeon, S.-K. Lee, S.-W. Kim, S.-C. Jeon, J.H. Lee, J.-M. Hur, Electrolytic reduction of $1kg-UO_2$ in $Li_2O-LiCl$ molten salt using porous anode shroud, J. Korean Electrochem. Soc. 18 (2015) 121-129 (in Korean).   DOI
19 F. Lantelme, H. Alexopoulos, D. Devilliers, M. Chemla, A gas electrode: behavior of the chlorine injection electrode in fuse alkali chlorides, J. Electrochem. Soc. 138 (1991) 1665-1671.   DOI
20 Y. Sakamura, M. Kurata, T. Inoue, Electrochemical reduction of $UO_2$ in molten $CaCl_2$ or LiCl, J. Electochem. Soc. 153 (2006) D31-D39.   DOI