Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.10.814

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration  

Kim, Yong-Hyuk (Department of Electrical Engineering, Kyung Won University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.10, 2010 , pp. 814-819 More about this Journal
Abstract
Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.
Keywords
Porous carbon electrode; Electrolytic absorptance; Zinc electrode; Electrolyte concentration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. S. Kim and Y. T. Park, J. KIEEME 12, 606 (1999).   과학기술학회마을
2 K. Sheem, Y. H. Lee, and H. S. Lim, J. Power Sources 158, 1425 (2006).   DOI
3 W. S. Choi and B. U. Hong, J. KIEEME 19, 1010 (2006).   과학기술학회마을
4 A. J. Bard and R. F. Faulkner, Electrochemical methods, 2nd ed. (John Wiley, NY, 2000) p. 160.
5 R. Parsons, Chem Rev. 90, 813 (1990).   DOI
6 W. M. Saslow, Am. J. Phys. 67, 574 (1999).   DOI
7 A. Hassibi, R. Navid, R. W. Dutton, and T. H. Lee, J. Appl. Phys. 96, 1074 (2004).   DOI   ScienceOn
8 B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer Academic Publishers, NY, 1999) p. 45.
9 C. M. A. Brett and A. M. O. Brett, Electrochemistry: principles, methods, and applications (Oxford Univ Press, Oxford, 1993) p. 380.
10 A. A. Rahman, S. Bhat, and S. Bhansali, J. Electrochemi. Soci. 155, 355 (2008).
11 S. Chen and R. W. Murray, J. Phys. Chem. 103B, 9996 (1999).
12 J. Hone, M. C. Llaguno, and N. M. Nemes, Appl. Phys. Lett. 77, 666 (2000).   DOI
13 J. A. Leel, Sensor. Actuat. B-Chem. B129, 372 (2008).
14 Y. Tzeng, Y. Chen, and C. Liu, Diam. Relat. Mat. 12, 774 (2003).   DOI