• Title/Summary/Keyword: electroless-Ni coated

Search Result 46, Processing Time 0.035 seconds

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

An Improvement in the Properties of MH Electrode of Ni/MH Battery by the Copper Coating (Ni/MH 전지에서 Cu 도금에 의한 음극활물질의 전극 특성 향상)

  • Cho, Jin Hun;Kim, In Jung;Lee, Yun Sung;Nahm, Kee Suk;Kim, Ki Ju;Lee, Hong Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.568-574
    • /
    • 1997
  • The effect of microencapsulation of maetal hydride (MH) with copper on the electrode performance of a Ni/MH battery has been investigated. The MH electrodes were prepared with a combination of cold press and paste methods. The discharge capacity of the electrode increased with an addition of small amounts if CMC into the electrode, but decreased when heat-treated in an oxygen-free nitrogen flow. The capacity of a Cu-coated $LaNi_5$ electrode was higher than that of LaNi5electrode. The discharge capacity of the electrode prepared with Cu-coated $LaNi_5$ increased with the increase of copper content in the electrode. It is considered that the increase of copper content enhanced the current density on the electrode surface, leading to the increase of the discharge capacity The MH electrode coated by an acidic electroless plating method showed much higher discharge capacity than that using an alkaline electroless plating method. The discharge capacity of the $LaNi_{4.5}Al_{0.5}$ electrode was higher than that of the $LaNi_5$ electrode. Also, the effect of microencapsulation on the deactivation of $LaNi_5$ was studied using an absorption-desorption cycle in CO-containing hydrogen.

  • PDF

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.

Application of an electroless copper coating in alkaline bath to preparation of the metal hydride electrode (금속 수소화물 전극제조에 있어서 알카리 무전해 구리 도금법의 응용)

  • CHOI, Jeon;PARK, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 1992
  • Electroless copper plating method using an alkaline bath have been employed in copper coating of the (LM)Ni4.5Co0.1MnO.2A10.2 hydrogen storage alloy powders for electrode preparation. The plating were conducted without any pretreatment of alloy powders. For the preparation of the electrodes, about 0.12g of the copper coated alloy powder (copper to alloy ratio 1/3 by weight) was compacted with pressure of 6 tons/cm2 at room temperature. The disk-type compacts had a diameter of 10mm and thickness of about 0.24mm. The electrode characteristics were examined through SEM observations and electrochemical measurements in a half cell. The electrochemical measurement showed that the maximum discharge capacity of the electrodes prepared by using alkaline bath were 245mAh per gram of coated alloy (327mAh per gram of alloy) and appeared a considerable degradation with increasing number of cycles. The decrease of the discharge capacity after 100 cycles was about 30% It can be suggested that, with a slight of improvement, this electroless copper plating method could be applied to the preparation of the rare earth-nickel based alloy electrode.

  • PDF

Microwave Absorbing Properties of Silver-coated Ni-Zn Ferrite Spheres Prepared by Electroless Plating (무전해 도금법에 의해 제조된 은 피복 Ni-Zn Ferrite Sphere의 전파흡수특성)

  • Kim, Jong-Hyuk;Kim, Jae-Woong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.202-206
    • /
    • 2005
  • The present investigation provides an electromagnetic radiation absorptive composition which comprises silver-coated ferrite microspheres dispersed in silicon rubber matrix for the aim of thin microwave absorber in GHz frequencies. Ni-Zn ferrite spheres with $50{\mu}m$ size in average were prepared by spray-drying and sintering at $1130^{\circ}C$. Conductive silver layer was plated on ferrite spheres by electroless plating. Conductive Ni-Zn ferrite sphere with uniform silver layer were obtained in the concentration of 10 g/L $AgNO_3$ per 20 g ferrite spheres. For this powder, electrical resistance is reduced as low as $10^{-2}\~10^{-3}\;\Omega$. The most sensitive material parameters with silver plating is real and imaginary parts of complex permittivity. The conductive Ni-Zn ferrite spheres have large values of dielectric constant. Due to this high dielectric constant of microspheres, matching thickness is reduced to as low as 2 mm at the frequency of 7 GHz, which is much thinner than conventional ferrite absorbers.

Electroless Ni Plating of Monodisperse Polymer Particles (단분산 가교 고분자 미립자의 무전해 니켈도금 연구)

  • Kim, Dong-Ok;Shon, Won-Il;Jin, Jeong-Hee;Oh, Seok-Heon
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.184-188
    • /
    • 2007
  • Monodisperse PMMA/HDDA polymer particles were coated via electroless Ni plating using sodium hypophosphite as a reducing agent in an acidic environment. In this study, the effects of 1) the pretreatment conditions, 2) the plating temperature, 3) the plating pH, and 4) the initial pH, control of plating bath on the variation of plating rate, surface state of plated particles and plating reproducibility were investigated. It was observed that every pretreatment steps, especially conditioning and acceleration step, were very important for obtaining uniform Ni plating and the plating rate was increased with the increase of plating temperature and pH. Moreover, the initial pH control of plating bath was critical for the plating reproducibility.

A study on the fabrication of porous cermet electrode for molten carbonate fuel cell anode (용융탄산염 연료전지 양극용 다공성 cermet 전극제조에 관한 연구)

  • Lee, K. H.;Chang, D. Y.;Kim, M.;Kang, S. G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.291-298
    • /
    • 1993
  • In order to substitute for porous nickel anode in Molten Carbonate Fuel Cell(MCFC), porous cermet elec-trode was fabricated with Ni and Ni-P coated ceramic powder. Ni and Ni-P were coated by electroless plat-ing method in the nickel solution containing of hydrazine and sodium hypophosphate as a reducing agent. The plating solution was stirred by air and mechanical agitator. Ultrasonic irradiation was applied to the plating bath to improved the effect of agitation and coating speed. Electorde was formed by pressing method and doc-tor blade method followed by sinterd at$ 800^{\circ}C$ for 6 hours in H2 environment. Anode performance test carried out by potentiodynamic polarization technique in the MCFC operating condition and 154-161mA/$\textrm{cm}^2$ as ob-tained as a anode current density at the+100mV overpotential.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Multilayer Coatings on Flexible substrate for Electromagnetic Shielding by Using Dry/Wet Hybrid Processes (건습식 혼합공정을 이용한 유연소재 상 전자파 차폐용 다층막 코팅)

  • Lee, Hoon-Seung;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.373-379
    • /
    • 2017
  • Dry processes like evaporation and sputtering in vacuum chamber are difficult to make a uniform, large area and high quality film on thin PET substrate because of PET degradation and bad adhesion. On the other hand, wet processes like electro or electroless plating have complex processes and require high environmental cost. In this study, we successfully prepared $2{\mu}m$ Zn/Cu/Ni multilayers coated on $12{\mu}m$ polyethylene terephthalate (PET) substrate by using dry-wet mixing processes. Their surface electric resistances were evaluated around $0.2{\Omega}$ by using 4 probe measurements. Furthermore, their corrosion resistance also evaluated by natural potential test and compared with other wet, dry and mixing process samples.