Browse > Article

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing  

Ham, Seung Woo (Gyeonggi Science High School)
Sim, Jong Ki (Department of Chemistry, Sungkyunkwan University)
Kim, Young Dok (Department of Chemistry, Sungkyunkwan University)
Publication Information
Applied Chemistry for Engineering / v.24, no.4, 2013 , pp. 438-442 More about this Journal
Abstract
In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.
Keywords
electroless plating; Ni; carbon fiber; porous structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. U. Falk and A. J. Salkind, Alkaline Storage Batteries, Wiley, New York (1969).
2 M. Fantini and A. Gorenstein, Sol. Energ. Mater., 16, 487 (1987).   DOI   ScienceOn
3 M. S. Whittingham, R. F. Savinell, and T. Zawodzinski, Chem. Rev., 104, 4243 (2004).   DOI   ScienceOn
4 W. J. Thomas and U. Ullah, J. Catal., 15, 342 (1969).   DOI   ScienceOn
5 H. Deng, D. L. Gin, and R. C. Smith, J. Am. Chem. Soc., 120, 3522 (1998).   DOI   ScienceOn
6 E. C. Peters, F. Svec, and J. M. J. Frechet, Adv. Mater., 11, 1169 (1999).   DOI   ScienceOn
7 J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D. Y. Yoon, and M. Trollsas, Adv. Mater., 10, 1049 (1998).   DOI   ScienceOn
8 M. Kanungo, A. Kumar, and A. Q. Contractor, J. Electroanal. Chem., 528, 46 (2002).   DOI   ScienceOn
9 D. S. Peterson, T. Rohr, F. Svec, and J. M. J. Frechet, J. Proteome Res., 1, 563 (2002).   DOI   ScienceOn
10 B. de Boer, U. Stalmach, H. Nijland, and G. Hadziioannou, Adv. Mater., 12, 1581 (2000).   DOI   ScienceOn
11 C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, and Y. Ding, J. Am. Chem. Soc., 129, 42 (2007).   DOI   ScienceOn
12 Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, and D. Zhao, Angew. Chem. Int. Edit., 44, 7053 (2005).   DOI   ScienceOn
13 X. Li, C.-A. Fustin, N. Lefevre, J.-F. Gohy, S. de Feyter, J. de Baerdemaeker, W. Egger, and I. F. J. Vankelecom, J. Mater. Chem., 20, 4333 (2010).   DOI   ScienceOn
14 X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu, and X. B. Zhao, J. Phys. Chem. C, 115, 22662 (2011).   DOI   ScienceOn
15 L. Li, Y. Zhong, C. Ma, J. Li, C. Chen, A. Zhang, D. Tang, S. Xie, and Z. Ma, Chem. Mater., 21, 4977 (2009).   DOI   ScienceOn
16 B. You, L. Shi, N. Wen, X. Liu, L. Wu, and J. Zi, Macromolecules, 41, 6624 (2008).   DOI   ScienceOn
17 C. Wang, Q. Wang, and T. Wang, Langmuir, 26, 18357 (2010).   DOI   ScienceOn
18 C. J. Bell and C. A. Leclerc, Energ. Fuel., 21, 3548 (2007).   DOI   ScienceOn
19 P. H. Emmett and T. W. de Witt, J. Am. Chem. Soc., 65, 1253 (1943).   DOI
20 M. Rezaei, S. M. Alavi, S. Sahebdelfar, and Z.-F. Yan, Energ. Fuel., 20, 923 (2006).   DOI   ScienceOn
21 L. Cao, Z. Gao, S. L. Suib, T. N. Obee, S. O. Hay, and J. D. Freihaut, J. Catal., 196, 253 (2000).   DOI   ScienceOn
22 V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Palmisano, and M. Schiavello, Appl. Catal. B-Environ., 20, 15 (1999).   DOI   ScienceOn
23 T. Ibusuki and K. Takeuchi, Atmos. Environ., 20, 1711 (1967).
24 J. Libera and Y. Gogotsi, Carbon, 39, 1307 (2001).   DOI   ScienceOn
25 M. Sanchez, J. Rams, and A. Urena, Oxid. Met., 69, 327 (2008).   DOI
26 J. J. Spivey, Ind. Eng. Chem. Res., 26, 2165 (1987).   DOI   ScienceOn
27 E. M. Cordi and J. L. Falconer, J. Catal., 162, 104 (1996).   DOI   ScienceOn
28 H. S. Kang, H. S. Lee, H. S. Chung, D. H. Ahn, S. H. Son, Y. G. Chung, and M. J. Song, J. Korean Ind. Eng. Chem., 7, 715 (1996).