• Title/Summary/Keyword: electrode impedance

Search Result 688, Processing Time 0.022 seconds

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

A Hybrid Electrochemical Capacitor Using Aqueous Electrolyte (수용성 전해액을 사용하는 하이브리드 전기화학 축전기)

  • Kim, Jong-Huy;Jin, Chang-Soo;Shin, Kyoung-Hee;Lee, Mi-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.153-157
    • /
    • 2003
  • A hybrid electrochemical capacitor having both characteristics of electric double layer capacitance and pseudo-capacitance was studied throughout cell tests. Asymmetric electrodes with $Ni(OH)_2/activated$ carbon based positive electrode and activated carbon based negative electrode were used in preparing test cells of $5\times5cm^2$. Cyclic voltammetry measurements and impedance measurements were conducted to understand electrochemical behavior of each electrode. To find an optimal mass ratio of negative to positive electrode, charge-discharge cycle tests were also performed.

Fabrication of AIN-based FBAR Devices by Using a Novel Process and Characterization of Their Frequency Response Characteristics in terms of Various Electrode Metals (새로운 공정을 이용한 AIN 체적 탄성파 소자의 제작 및 다양한 금속 전극막에 따른 주파수 응답 특성 분석)

  • Kim, Bo-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.915-920
    • /
    • 2007
  • AIN-based film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration such as Mo/AIN/bottom-metal/Si are fabricated by employing a novel process. The proposed resonator structure does not require any supporting layer above the substrate, which leads to the reduction in energy loss of the resonators. For all the FBAR devices, the frequency response characteristics are measured and the device parameters, such as return loss and input impedance, are extracted from the frequency responses, and analyzed in terms of the various metals such as Al. Cu, Mo, W used in the bottom-electrode. The mass-loading effect caused by the used bottom-electrode metals is found to be the main reason for the difference revealed in the measured characteristics of the fabricated FBAH devices. The results obtained in this study also show that the degree of match in lattice constant and thermal expansion coefficient hetween piezoelectric layers and electrode metals is crucial to determine the device performance of FEAR.

Study on the Design and Fabrication of Traveling-Wave Ti:LiNbO$_3$Phase Optical Modulators (진행파형 Ti:LiNbO$_3$위상 광변조기 설계 및 제작에 관한 연구)

  • 정홍식;서정하;엄진섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1782-1792
    • /
    • 1994
  • Ti : $LiNbO_3$ traveling-wave phase optical modulators at wavelength 1.3㎛ have been designed and fabricated, focusing on the optical waveguide and asymmetric coplanar electrode structure. To improve the phase-mismatch of traveling-wave ACPS electrode, the characteristic impedance, effective microwave index, and electrode loss have been presented as a function of geometric parameters including electrode and buffer layer thickness. Low-loss channel optical waveguides on $LiNbO_3$ were fabricated by the Ti diffusion method with $O_2$ water-vapor environment. $2.5{\mu}m$ thick electrode was successfully fabricated by double-spin image reversal process. Modulation bandwidth was limited by a resonance at 2.9 GHz and modulation bandwidth up to 2.5GHz was approxirnately measured.

  • PDF

Supercapacitive Properties of Co-Ni Mixed Oxide Electrode Adopting the Nickel Foam as a Current Collector

  • Cho, Hyeon Woo;Nam, Ji Hyun;Park, Jeong Ho;Kim, Kwang Man;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3993-3997
    • /
    • 2012
  • Three-dimensional porous nickel foam was used as a current collector to prepare a Co-Ni oxide/Ni foam electrode for a supercapacitor. The synthesized Co-Ni oxide was proven to consist of mixed oxide phases of $Co_3O_4$ and NiO. The Co-Ni oxide/Ni foam electrode prepared was characterized by morphological observation, crystalline property analysis, cyclic voltammetry, and impedance spectroscopy. Cyclic voltammetry for the electrode showed high specific capacitances, such as 936 F $g^{-1}$ at 5 mV $s^{-1}$ and 566 F $g^{-1}$ at 200 mV $s^{-1}$, and a comparatively good cycle performance. These improved results were mainly due to the dimensional stability of the nickel foam and its high electrical contact between the electrode material and the current collector substrate.

Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites (Glass-Al2O3 복합소재를 원료로 한 LTCC 다층회로 기판의 제조)

  • Kwak, Hun;Jeon, Hyung-Do;Kim, Hwan;Lee, Won-Jae;Shin, Byoung-Chul;Kim, Il-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.509-516
    • /
    • 2008
  • Multi-layer circuit card for semiconductor inspection was fabricated by LTCC technology. After a proper impedance design without electrical interference, ceramic tapes with the composition of $CaO-Al_2O_3-SiO_2-B_2O_3$ glass and $Al_2O_3$ were prepared. The electrode with silver paste printed on the tape. Printed ceramic sheets were then laminated and sintered. Densities and dielectric properties were measured. The microstructure, fracture surface of the region of via and matching state of substrate-electrode were observed. The durability of plated outside electrode were examined by hardness and scratch test.

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.187-191
    • /
    • 2014
  • This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.

Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces (백금족 전력 계면에서 전기화학적 Impulse 발진)

  • 전장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

Fabrication of Carbon Spheres by hydrothermal synthesis and evaluation of characteristics (수열 합성법을 이용한 구형 탄소의 제조 및 특성 평가)

  • Lee, Eun-Jung;Park, Soo-Gil;KIM, Han-Ju;Kim, Hong-il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.165-166
    • /
    • 2014
  • The electric double-layer capacitors (EDLCs) are consisted of electrodes, electrolyte and separator. Among of them, electrode materials are generally used carbon materials. In this study, we experimented for the purpose of fabrication of carbon spheres from various carbohydrates as electrode material. Carbon spheres were prepared by hydrothermal synthesis process. Carbon spheres' morphology had been examined using scanning electron microscopy (SEM) and specific surface area had been examined using BET analysis. To confirm the possibilities of carbon spheres as EDLC's electrode materials, we conducted electrochemical tests such as cyclic voltammetry (CV), impedance and cycle ability.

  • PDF

Preparation and Electrochemical Properties of Carbon Cryogel for Supercapacitor

  • Song, Min-Seob;Nahm, Sahn;Oh, Young-Jei
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.662-666
    • /
    • 2008
  • Electrochemical properties of carbon cryogel electrode for the application of composite electrode materials mixed with metal oxide in supercapacitor have been studied. Carbon cryogels were synthesized by sol-gel polycondensation of resorcinol with form aldehyde, followed by a freeze drying, and then pyrolysis in an inert atmosphere. Physical properties of carbon cryogel were characterized by BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that carbon cryogel is amorphous material. The electrochemical properties of carbon cryogel were measured by cyclic voltammetry as a function of concentration of liquid electrolyte, galvanostatic charge-discharge with different scan rates and electrochemical impedance measurements. The result of cyclic voltammetry indicated that the specific capacitance value of a carbon cryogel electrode was approximately 150.2 F/g (at 5 mV/s in 6M KOH electrolyte).