• Title/Summary/Keyword: electrode charging

Search Result 153, Processing Time 0.035 seconds

Electrode Charging Effect on Ion Energy Distribution of Dual-Frequency Driven Capacitively Coupled Plasma Etcher (이중 주파수 전원의 용량성 결합 플라즈마 식각장비에서 전극하전에 의한 입사이온 에너지분포 변화연구)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.39-43
    • /
    • 2014
  • The effect of electrode charging on the ion energy distribution (IED) was investigated in the dual-frequency capacitively coupled plasma source which was powered of 100 MHz RF at the top electrode and 400 kHz bias on the bottom electrode. The charging property was analyzed with the distortion of the measured current and voltage waveforms. The capacitance and the resistance of electrode sheath can change the property of ion and electron charging on the electrode so it is sensitive to the plasma density which is controlled by the main power. The ion energy distribution was estimated by equivalent circuit model, being compared with the measured distribution obtained from the ion energy analyzer. Results show that the low frequency bias power changes effectively the low energy population of ion in the energy distribution.

Simulation of Charging Process in Forming Electret for Sensor Material (센서재료용 일렉트렛트 형성에 대전과정 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.185-188
    • /
    • 2011
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current(TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method(FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Charging Characteristics of Electrostatic Sprayer Applied Square Pulse (구형파 펄스를 인가한 정전분무 장치의 대전량 특성)

  • 박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.573-578
    • /
    • 2003
  • In this study, new type of induction charging system for electrostatic spraying was manufactured and proposed to improve the electrical safety and charging efficiency. And parameters of proposed system to generate the maximum deposition current with electrical safety were selected and investigated. The selected parameters were frequency of square pulse and thickness of insulation material, outer diameter of device and thickness and positions of electrode. Charging quantity of water drop was measured by deposition current detected from sensing plate indirectly. The maximum deposition current for each parameter were 3.5[uA] at the frequency of 15[kHz] and thickness of 0.25[mm] insulating layer. And maximum deposition currents were 2.8[uA] and 3.0[uA] at 25[mm] outer diameter of charging device and 0.25[mm] thickness of electrode each. Effects of electrode position from spraying nozzle on deposition current was a little.

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Charging and Discharging Characteristics of Electric Double Layer Capacitors used for a Storage Battery of Solar Energy

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • The charging/discharging characteristics of electric double layer capacitors (EDLCs) for an electric power storage device application were investigated. The specific area of the carbonaceous electrode surface by the BET method was in the range of $1800{\sim}2000\;m^2/g$. The charge distributions during charging and discharging were measured by means of a pulsed-electro-acoustic (PEA) method, and the voltage characteristics of EDLCs connected to solar cells were evaluated. The results showed that the distributions of positive and negative charges were spatially uneven, which was due to the mobility of the positive and negative charges in the carbonaceous electrode surface of the EDLCs. The charge accumulation region concentrated on central part of the carbonaceous electrode and the required times for charging and discharging were almost same.

A Study on the Simulation of the Corona Charging Process of Polypropylene Electret Cell Using Finite Element Method (유한요소법을 이용한 폴리프로필렌 일렉트렛트 셀의 코로나 대전과정 시뮬레이션에 관한 연구)

  • Lee, Su-Kil;Park, Geon-Ho;Jung, Il-Hyung;Jang, Kyung-Uk;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.169-171
    • /
    • 1993
  • In order to estimate space charging process in the corona charging apparatus which has been used to make polymer electret cell, the electrical properties of 30[${\mu}m$] thick polypropylene film were obtained from TSC measurement after corona charging between copper knife electrode and aluminum cylinder electrode with the voltage of -8, -7, -6, -5 (kV). And, the electrostatic contour and the electric field vector were calculated using Finite Element Method with the electrical properties obtained from TSC spectra analysis. The edge effect around the edge of knife electrode affects electrostatic contour on the surface of specimen and the electric field concentration inside the polymer. As a result the uneven charging state in the electret cell due to the mistake of design was calculated, and the optimal design of corona charging apparatus opprobriate to various specimen was come to be practicable.

  • PDF

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

Development of Very High Intensity Precharger of Electrostatic Precipitator for Diesel Particulates (디-젤배진용 강력전치하전장치의 개발)

  • Mun, Jae-Deok;Son, Hyeon;Seo, Bo-Hyeok;Kim, Gwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.226-229
    • /
    • 1984
  • A novel high intensity charging device has been developed for the control of the submicron particles, such as the diesel soot particulates, which are very hard to charge highly by any means of the conventional charging device. Having new corona electrodes of a multineedle disk with the corona field-control electrodes in the outer-cylinder electrode, extremely intense and stable coronas on there sharp points expanding both radially and axially are established in the corona charging region between the multi-corona -needles and an outer-cylinder electrode. As a result, the maximum corona field intensity and current density of the charging device of the standard one on soot load in laboratory tests have been 8.5KV/cm(E=$2V_m$/D(1nD/d)) and $6.5{\mu}A/cm^2$ which enhance greatly the charging of soot particles about several 100 times higher than those obtained in conventional cylinder precipitators.

  • PDF

Study on the Charging Characteristics of a Sealed Type Ni-Cd Cell (밀폐식 Ni-Cd 전지의 충전특성에 관한 연구)

  • Yung Woo Park;Chai Won Kim;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.347-352
    • /
    • 1971
  • The variations of the positive and negative electrode potentials, and of internal pressure were measured during the charge of the sealed type Ni-Cd cell. Both polarization characteristics of a paste type Cd-electrode as a gas diffusion electrode in 30% KOH solution and the effects of active carbon electrode as an oxygen consuming auxiliary electrode of the Ni-Cd cell on the charging characteristics of the cell were studied. Peak voltage at the end of charge of the cell is ascribed to the peak at the negative electrode potential, which is due to the concentration polarization by the lack of $Cd^{++}$ ion and oxygen concentration. And the recovery of the negative electrode potential is resulted from depolarization by the increasing diffusion limiting current density with the increasing oxygen pressure. The active carbon electrode was effective as an oxygen consuming auxiliary electrode. The internal pressure of the cell could be maintained below 200mmHg even at one hour rate charge and overcharge by the use of active carbon electrode as an auxiliary electrode.

  • PDF