• Title/Summary/Keyword: electrochemical response

Search Result 221, Processing Time 0.022 seconds

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

Electrochemical Sensing of Hydrogen Peroxide Using Prussian Blue@poly(p-phenylenediamine) Coated Multi-walled Carbon Nanotubes

  • Young-Eun Jeon;Wonhyeong Jang;Gyeong-Geon Lee;Hun-Gi Hong
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.339-347
    • /
    • 2023
  • In this study, a nanocomposite of multi-walled carbon nanotubes@poly(p-phenylenediamine)-Prussian blue (MWCNTs@PpPD-PB) was synthesized and employed for the electrochemical detection of hydrogen peroxide (H2O2). A straightforward approach was utilized to prepare an electrochemical H2O2 sensor using a MWCNTs@PpPD-PB modified glassy carbon electrode, and its electrochemical behavior was investigated through techniques such as electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The modified electrode displayed a favorable electrocatalytic response towards the reduction of H2O2 in an acidic solution. The developed sensor exhibited linearity in the concentration range of 0.005 mM to 2.225 mM for H2O2, with high sensitivity (583.6 ㎂ mM-1cm-2) and a low detection limit (0.95 ㎛, S/N = 3) at an applied potential of +0.15 V (vs. Ag/AgCl). Additionally, the sensor demonstrated excellent selectivity, reproducibility, and stability. Moreover, successful detection of H2O2 was achieved in real samples.

Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode

  • Huang, Ke-Jing;Xu, Chun-Xuan;Xie, Wan-Zhen
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.988-992
    • /
    • 2008
  • A poly(methyl red) film-modified glassy carbon electrode (PMRE) was fabricated for determination of norfloxacin (NFX). The electrochemical behavior of NFX was investigated and a well-defined oxidation peak with high sensitivity was observed at the film electrode. PMRE greatly enhanced the oxidation peak current of NFX owing to the extraordinary properties of poly(methyl red) film. Based on this, a sensitive and simple voltammetric method was developed for measurement of NFX. A sensitive linear voltammetric response for NFX was obtained in the concentration range of $1\;{\times}\;10^{-6}\;-\;1\;{\times}\;10^{-4}$ mol/L and the detection limit was $1\;{\times}\;10^{-7}$ mol/L using linear sweep voltammetry (LSV). The proposed method possessed advantages such as low detection limit, fast response, low cost and simplicity. The practical application of this new analytical method was demonstrated with NFX pharmaceuticals.

A SOD-Based Amperometric Biosensor for Superoxide Ion

  • Tian, Yang;Okajima, Takeyoshi;Kitamura, Fusao;Ohsaka, Takeo
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.212-215
    • /
    • 2002
  • A superoxide dismutase (SOD)-based superoxide ion $(O_2^-)$ sensor was fabricated by immobilizing SOD on a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) which was prepared on a gold electrode. The SAM of MPA was found to function as an effective promoter for the electrode reaction of SOD. The amperometric response to $(O_2^-)$ was monitored at 300mV and -100mV vs. Ag/ Agel in 5mM phosphate buffer solution containing $KO_2$. The sensor was proved to have a high sensitivity, selectivity and short response time (<5 s) and negligible interference.

Differential Pulse Voltammetric Determination of Copper(II) Using Glassy Carbon Electrodes Modified with Nafion-DTPA-Glycerol (Nafion-DTPA-Glycerol이 수식된 유리탄소전극을 사용한 미분펄스 전압전류법에 의한 구리(II)이온의 측정)

  • 박찬주;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • A glassy carbon electrode(GCE) modified with nafion-DTPA (diethylene triamine-pentaacetic acid)-glycerol is used for the highly selective and sensitive determination of a trace amount of Cu(II). Various experimental parameters, which influenced the response of nafion-DTPA-glycerol modified electrode to Cu(II), are optimized. The Copper(II) is accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface is characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry(DPV). The electrochemical response is evaluated with respect to concentration of modifier, pH and preconcentration time, quiet time, copper(II) concentration, and other variables. A linear range is obtained in the concentration range 1.0${\times}$10$^{-8}$ M-1.0${\times}$10$^{-6}$ MCu(II) with 7 min preconcentration time. The detection limit(3s) is as low as 2.36${\times}$10$^{-8}$ M (1.50 ppb).

Design and Fabrication of Capacitive Pressure Sensor (용량형 압력센서의 설계 및 제작)

  • 이승준;김병태;권영수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.561-564
    • /
    • 2000
  • Silicon capacitive pressure sensor has been fabricated by using electrochemical etching stop and silicon-to-glass electrostatic bonding technique. A diaphragm structure is designed to compensate the nonlinear response. A cavity is etched into the silicon to the depth of 2$\mu\textrm{m}$ by anisotropic etching in 20wt.% TMAH solution at 80$^{\circ}C$. A fabricated sensor showed 3.3 pF zero-pressure capacitance, 297 pp.m/mmHg sensitivity, and a 7.4 7%F.S. nonlinear response in a 0-1 kgf/cm$^2$pressure range.

  • PDF

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin;Liu, Weifeng;Liang, Qi;Yan, Guang;Qin, Lei;Chen, Lin;Wang, Meiling;Yang, Yongzhen;Liu, Xuguang
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850140.1-1850140.9
    • /
    • 2018
  • An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.

Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison

  • Farooq, Umer;Doh, Chil-Hoon;Pervez, Syed Atif;Kim, Doo-Hun;Lee, Sang-Hoon;Saleem, Mohsin;Sim, Seong-Ju;Choi, Jeong-Hee
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • The work presented in this report was a detailed comparative study of the electrochemical response exhibited by graphite anodes in Li-ion batteries having different physical features. A comprehensive morphological and physical characterization was carried out for these graphite samples via X-ray diffraction and scanning electron microscopy. Later, the electrochemical performance was analyzed using galvanostatic charge/discharge testing and the galvanostatic intermittent titration technique for these graphite samples as negative electrode materials in battery operation. The results demonstrated that a material having a higher crystalline order exhibits enhanced electrochemical properties when evaluated in terms of rate-capability performance. All these materials were investigated at high C-rates ranging from 0.1C up to 10C. Such improved response was attributed to the crystalline morphology providing short layers, which facilitate rapid Li+ ions diffusivity and electron transport during the course of battery operation. The values obtained for the electrical conductivity of these graphite anodes support this possible explanation.

Liquid electrochemical sensors using carbon nanotube film (Carbon Nanotube Film을 이용한 액체 전기화학 센서)

  • Noh, Jaeha;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.255-260
    • /
    • 2021
  • We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.

Electrochemical Detection of Self-Assembled Viologen Modified Electrode as Mediator of Glucose Sensor

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.106-110
    • /
    • 2009
  • An amperometric glucose biosensor has been developed using viologen derivatives as a charge transfer mediator between a glucose oxidase (GOD) and a gold electrode. A highly stable self-assembled monolayer (SAM) of thiol-based viologen was immobilized onto the gold electrode of a quartz crystal microbalance (QCM) and GOD was immobilized onto the viologen modified electrode. This biosensor response to glucose was evaluated amperometrically in the potential of -300mV. Upon immobilization of the glucose oxidase onto the viologen modified electrode, the biosensor showed rapid response towards glucose. Experimental conditions influencing the biosensor performance, such as pH potential, were optimized and assessed. This biosensor offered excellent electrochemical responses for glucose concentration below ${\mu}$ mol level with high sensitivity and selectivity and short response time. The levels of the RSDs (<5%) for the entire analyses reflected the highly reproducible sensor performance. A linear calibration range between the current and the glucose concentration was obtained up to $4.5{\times}10^{-4}M$. The detection limit was determined to be $3.0{\times}10^{-6}M$.