Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison |
Farooq, Umer
(Department of Electrical Functionality Material Engineering, University of Science and Technology (KERI Campus))
Doh, Chil-Hoon (Department of Electrical Functionality Material Engineering, University of Science and Technology (KERI Campus)) Pervez, Syed Atif (Department of Electrical Functionality Material Engineering, University of Science and Technology (KERI Campus)) Kim, Doo-Hun (Korea Electrotechnology Research Institute (KERI)) Lee, Sang-Hoon (Korea Electrotechnology Research Institute (KERI)) Saleem, Mohsin (Department of Electrical Functionality Material Engineering, University of Science and Technology (KERI Campus)) Sim, Seong-Ju (Korea Electrotechnology Research Institute (KERI)) Choi, Jeong-Hee (Korea Electrotechnology Research Institute (KERI)) |
1 | Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater, 10, 725 (1998). http://dx.doi.org/10.1002/(sici)1521-4095(199807)10:10<725::aid-adma725>3.0.co;2-z. DOI |
2 | Kang K, Meng YS, Breger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 311, 977 (2006). http://dx.doi.org/10.1126/science.1122152. DOI |
3 | Tarascon JM, Armand M. Review article: issues and challenges facing rechargeable lithium batteries. Nature, 414, 359 (2001). http://dx.doi.org/10.1038/35104644. DOI |
4 | Farooq U, Choi JH, Kim D, Pervez SA, Yaqub A, Hwang MJ, Lee YJ, Lee WJ, Choi HY, Lee SH, You JH, Ha CW, Doh CH. Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries. J Nanosci Nanotechnol, 14, 9340 (2014). http://dx.doi.org/10.1166/jnn.2014.10132. DOI |
5 | Yaqub A, Lee YJ, Hwang MJ, Pervez SA, Farooq U, Choi JH, Kim D, Choi HY, Cho SB, Doh CH. Low temperature performances of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries. J Mater Sci, 49, 7707 (2014). http://dx.doi.org/10.1007/s10853-014-8479-6. DOI |
6 | Park CM, Kim JH, Kim H, Sohn HJ. Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 39, 3115 (2010). http://dx.doi.org/10.1039/b919877f. DOI |
7 | Pervez SA, Kim D, Farooq U, Yaqub A, Choi JH, Lee YJ, Doh CH. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB. ACS Appl Mater Interfaces, 6, 11219 (2014). http://dx.doi. org/10.1021/am501370f . DOI |
8 | Farooq U, Yaqub A, Choi JH, Pervez SA, Kim DH, Lee YJ, Doh CH. Metal-assisted silicon based negative electrode for Li-ion batteries. Mater Lett, 126, 291 (2014). http://dx.doi.org/10.1016/j.matlet.2014.04.061. DOI |
9 | Takami N, Inagaki H, Tatebayashi Y, Saruwatari H, Honda K, Egusa S. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. J Power Sources, 244, 469 (2013). http://dx.doi.org/10.1016/j.jpowsour.2012.11.055. DOI |
10 | Yu Y, Zhu Y, Lianga J, Fan L, Qian Y. Synthesis of a novel carbon network-supported Fe3O4@C composite and its applications in high-power lithium-ion batteries. Electrochim Acta, 111, 809 (2013). http://dx.doi.org/10.1016/j.electacta.2013.08.088. DOI |
11 | Ahmed B, Shahid M, Nagaraju DH, Anjum DH, Hedhili MN, Alshareef HN. Surface passivation of MoO3 nanorods by atomic layer deposition toward high rate durable Li-ion battery anodes. ACS Appl Mater Interfaces, 7, 13154 (2015). http://dx.doi.org/10.1021/acsami.5b03395. DOI |
12 | Mukherjee R, Krishnan R, Lu TM, Koratkar N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy, 1, 518 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.04.001. DOI |
13 | Yu L, Kim KJ, Park DY, Kim MS, Kim KI, Lim YS. Preparation and characterization of pitch/cokes composite anode material for high power lithium secondary battery. Carbon Lett, 9, 210 (2008). http://dx.doi.org/10.5714/cl.2008.9.3.210. DOI |
14 | Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 47, 2930 (2008). http://dx.doi.org/10.1002/anie.200702505. DOI |
15 | Dahn JR, Seel JA. Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc, 147, 899 (2000). http://dx.doi.org/10.1149/1.1393289. DOI |
16 | Kim KJ, Lee TS, Kim HG, Lim SH, Lee SM. A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries. Electrochim Acta, 135, 27 (2014). http://dx.doi.org/10.1016/j.electacta.2014.04.171. DOI |
17 | Park DY, Lim YS, Kim MS. Performance of expanded graphite as anode material for high power Li-ion secondary batteries. Carbon Lett, 11, 343 (2010). http://dx.doi.org/10.5714/cl.2010.11.4.343. DOI |
18 | de las Casas C, Li W. A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources, 208, 74 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.013. DOI |
19 | Brutti S, Hassoun J, Scrosati B, Lin CY , Wu H, Hsieh HW. A high power Sn–C/C–LiFePO4 lithium ion battery. J Power Sources, 217, 72 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.05.102. DOI |
20 | Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochim Acta, 128, 163 (2014). http://dx.doi.org/10.1016/j.electacta.2013.09.007. DOI |
21 | Pang H, Wang X, Zhang G, Chen H, Lv G, Yang S. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy. Appl Surf Sci, 256, 6403 (2010). http://dx.doi.org/10.1016/j.apsusc.2010.04.025. DOI |
22 | Rani A, Nam SW, Oh KA, Park M. Electrical conductivity of chemically reduced graphene powders under compression. Carbon Lett, 11, 90 (2010). http://dx.doi.org/10.5714/cl.2010.11.2.090. DOI |
23 | Nam S, Lee JM, Pukha VE, Seo HO, Kim YD, Lee HJ. Carbon anode thin films for lithium batteries. Curr Appl Phys, 14, 1010 (2014). http://dx.doi.org/10.1016/j.cap.2014.04.012. DOI |
24 | Zhang WH. Calculation model of edge carbon atoms in graphite particles for anode of lithium-ion batteries. Trans Nonferrous Met Soc China, 21, 2466 (2011). http://dx.doi.org/10.1016/s1003-6326(11)61038-8. DOI |
25 | Sakti A, Michalek JJ, Fuchs ERH, Whitacre JF. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification. J Power Sources, 273, 966 (2015). http://dx.doi.org/10.1016/j.jpowsour.2014.09.078. DOI |
26 | Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W. Lithium−air battery: promise and challenges. J Phys Chem Lett, 1, 2193 (2010). http://dx.doi.org/10.1021/jz1005384. DOI |