• Title/Summary/Keyword: electrochemical parameters

Search Result 342, Processing Time 0.028 seconds

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T.;Pham, Huy K.;Nguyen, Vu A.;Mai, Tung T.;Le, Hang T.T.;Hoang, Thuy T.B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.186-198
    • /
    • 2022
  • Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.

Assessment of In-Situ Solid-State Reference Electrode for Monitoring Corrosion of Steel Rebar in Simulated Concrete Environments (모의 콘크리트 환경에서 강철 철근의 부식을 모니터링하기 위한 현장 고체 기준 전극 평가)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.281-282
    • /
    • 2023
  • The solid-state reference electrodes made of polyaniline-coated MnO2 (SSRE-PAM) and their electrochemical characteristics were studied in simulated concrete pore solutions (SCPS) containing 0 and 3.5% NaCl. Saturated calomel electrodes (SCE) have been used to conduct electrochemical studies on the stability behavior of SSRE-PAM. Open circuit potential (OCP) and potentiodynamic polarization techniques were used to assess the corrosion performance of steel rebar exposed in SCPS with 0 and 3.5% NaCl using SSRE-PAM. The results demonstrate that the SSRE-PAM was capable of identifying steel rebar in a concrete environment that was either passive or active. Potentiodynamic polarization parameters such as Ecorr and Icorr for steel rebar in SCPS containing 0 and 3.5%)NaCl are greater than that of the passive condition (0% NaCl). All the studies validate the importance of using SSRE-PAM for corrosion monitoring applications in concrete structures.

  • PDF

Study for the Liquid Metals Enabled Stretchable Electronics (액체금속을 활용한 신축성 전자소재 개발 동향)

  • Joo Hyung Lee;Yoon Su Lee;Jin Yoo;Seoyeon Won;Taehwan Lim
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Stretchable and flexible electronics that comply with dynamic movements and micromotion of the human tissues can enable real-time monitoring of physiologic signals onto the human skin and in the brain, respectively. Especially, gallium based liquid metal stretchable electronics can offer human-interactive biosensors to monitor various physiologic parameters. However, the liquid-like nature, surface oxidation and contamination by organic materials, and low biostability of the liquid metals have still limited the long-term use as bioelectronics. Here we introduced electrochemical deposition without oxidation pathways to overcome these practical challenges in liquid metal bioelectronics. CNT/PDDA composite with reduction way and PEDOT:BF4 with oxidation way under organic solvent are suggested as rationally designed material engineering approaches. We confirmed that the structures with the soft, flexible, and stretchable liquid metal platform can successfully detect dopamine with a high sensitivity and selectivity, record neural signals including action potentials without scar formation, and monitor physiologic signals such as EMG and ECG.

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using RuO2 anode (RuO2를 양전극으로 사용한 무격막 전해셀에서의 이산화염소수 제조)

  • Kwon, Tae Ok;Park, Bo Bae;Roh, Hyun Cheul;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2009
  • Generation of chlorine dioxide ($ClO_2$) was studied by the un-divided electrochemical cell system using $RuO_2$ anode material. Sodium chlorite ($NaClO_2$) was used as a precursor compound of chlorine dioxide. Effect of various operating parameters such as feed solution flow rate, initial solution pH, $NaClO_2$ and NaCl conc., and applied current density on the produced chlorine dioxide concentration and solution pH were investigated in un-divided electrochemical cell system. Produced chlorine dioxide concentration and solution pH were strongly depends on the initial solution pH and feed solution flow rate. Sodium chloride (NaCl) was not only good electrolyte, it was also used as a raw material of chlorine dioxide with $NaClO_2$. Observed optimum conditions were flow rate of feed solution (90 mL/min), initial pH (2.3), $NaClO_2$ concentration (4.7 mM), NaCl concentration (100 mM), and current density ($5A/dm^2$). Produced chlorine dioxide concentration was around 350 mg/L and solution pH was around 3.

Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium ion Battery Anode (PAN계 탄소섬유 제조조건에 따른 리튬이온 이차전지 음극의 전기화학적 특성)

  • An K. W.;Lee J. K.;Lee S. W.;Kim Y. D.;Cho W. I.;Ju J. B.;Cho B. W.;Park D. G.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • Poly-acrylonitrile (PAN) based carbon fibers were stabilized under various tensions in the presence of air at about $200^{\circ}C$ and sequentially carbonized under some different gas environments in the range of 700 to $1500^{\circ}C$. The prepared carbon fibers were used for rechargeable lithium ion battery anode to investigate preparation parameters effects on electrochemical characteristics. It was found that the tension during stabilization, carbonization temperature and gas atmospheres affect the carbon fiber properties such as conductivity, mechanical strength, surface morphology and diffusion coefficient of lithium ion, which are closely related to the on electrolchemical properties as well as the charge/discharge characteristics.

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery (전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화)

  • Kang, Donghyun;Arailym, Nurpeissova;Chae, Jeong Eun;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

Destruction of Spent Organic ion Exchange Resins by Ag(II)-Mediated Electrochemical Oxidation (Ag(II)매개산화에 의한 폐 유기이온교환수지의 분해)

  • Choi Wang-Kyu;Nam Hyeog;Park Sang-Yoon;Lee Kune-Woo;Oh Won-Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.183-189
    • /
    • 1999
  • A study on the destruction of organic cation and anion exchange resins by electro-generated Ag(II) as a mediator was carried out to develop the ambient-temperature aqueous process, known as Ag(II)-mediated electro-chemical oxidation (MEO) process, for the treatment of a large quantity of spent organic ion exchange resins as the low and Intermediated-level radioactive wastes arising from the operation, maintenance and repairs of nuclear facilities. The effects of controllable process parameters such as applied current density, temperature, and nitric acid concentration on the MEO of organic ion exchange resins were investigated. The cation exchange resin was completely decomposed to $CO_2$. The current efficiency increased with a decrease in applied current density while nitric acid concentration and temperature on the MEO of cation exchange resin did not affect the MEO. On the other hand, anion exchange resins were decomposed to CO and $CO_2$. The ultimate conversion to CO was about $10\%$ regardless of temperature. The destruction efficiencies to $CO_2$ were dependent upon temperature and the effective destruction of anion exchange resin could be obtained above $60^{\circ}C$.

Analysis on the Electrode Kinetic Parameters at the Pd/LiOH Electrolyte Interface using the Phase-shift Method (위상이동 방법에 의한 Pd/LiOH 전해질 계면의 전극속도론적 패러미터 해설)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Sung Chil;Son Kwang Chul
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.70-74
    • /
    • 1999
  • The electrode kinetic parameters at the Pd/0.5 M LiOH electrolyte interface have been qualitatively studied using the phase-shift method. The phase shift $(\phi)$ depends on both the cathode potential (E>0) and frequency (f), and $\theta$ is inversely proportional to the fractional surface coverage $\theta$. At an intermediate frequency (10 Hz), the phase-shift profile $(\phi\;vs.\;E)$ can be related to the fractional surface coverage $(\theta\;vs.\;E)$. The phase-shift method can be used to estimate or plot the Frumkin adsorption isotherm. The rate (r) of change of the free energy of adsorption with $({\theta})$ is 22.3 kJ/mol. The equilibrium constant (K) for adsorption and the standard free energy $({\Delta}G_{\theta})$ of the adsorbed hydrogen atom $(H_{ads})$ are $3.7\times10^{-3}{\Delta}G_{\theta}>-8.4kJ/mol$, respectively. For 1$0.38>\theta>0$, the energy liberation or the exothermic reaction for hydrogen adsorption at the Pd cathode can be occurred. The electrode kinetic parameters $(r,\;K,\;{\Delta}G_{\theta}$ depend on the fractional surface coverage $({\theta})$ or the phase shift $(\phi)$.

Determination of Lead(II) at Nation-Coated Glassy Carbon Electrodes Modified by Tetren-Glycerol (Nafion-Tetren-Glycerol이 수식된 유리탄소전극에서 납(II) 이온의 정량)

  • 반옥기;박은희;정근호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2003
  • Differential pulse voltammetry (DPV) using nafion-coated glassy carbon electrodes modified with Tetren(tetraethylene pentamine)-glycerol showed sensitivity for determining lead (II) at low concentration. The Lead (II) was accumulated on the electrode surface by the formation of the complex in an open circuit, and the resulting surface was characterized by medium exchange, electrochemical reduction, and differential pulse voltammetry. Various experimental parameters, such as the composition of modifier, preconcentration time, pH of electrolyte (0.1 M acetate buffer), and parameters of differential pulse voltammetry, were optimized. The initial potential was applied for 50 s, the electrode was scanned from -0.9 to -0.3 V, and the anodic peak current was measured at -0.604 V $\pm$ 0.015 V (vs. Ag/AgCl). The calibration plot was obtained in the range 1.0$\times$10$^{-8}$ M~l.0$\times$10$^{-6}$ M with pH 4.5 buffer solution. The detection limit (3$\sigma$) it as low as 5.0$\times$ 10$^{-9}$ M. This method is applied to the determination of lead(II) in a certified reference material and the result agrees satisfactorily with the certified value.