Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00815

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling  

Nguyen, Huyen T.T. (School of Chemical Engineering, Hanoi University of Science and Technology)
Pham, Huy K. (Hanoi University of Mining and Geology)
Nguyen, Vu A. (School of Chemical Engineering, Hanoi University of Science and Technology)
Mai, Tung T. (School of Chemical Engineering, Hanoi University of Science and Technology)
Le, Hang T.T. (School of Chemical Engineering, Hanoi University of Science and Technology)
Hoang, Thuy T.B. (School of Chemical Engineering, Hanoi University of Science and Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 186-198 More about this Journal
Abstract
Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.
Keywords
Electrowinning; Sludge; Simulation model; Copper recovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Allen, L. R. Bard, Electrochemical Methods: Fundamentals and Applications, John Wiley & Son, 2000.
2 S. Krishnan, N.S. Zulkapli, H. Kamyab, S. M. Taib, M. F. B. M. Din, Z. A. Majid, S. Chaiprapat, I. Kenzo, Y. Ichikawa, M. Nasrullah, S. Chelliapan, N. Othman, Environ. Technol. Innov., 2021, 22, 101525.   DOI
3 Y. Tang, P.-H. Lee, K. Shih, Environ. Sci. Technol., 2013, 47(15), 8609-8615.   DOI
4 H. B. Trinh, S. Kim, J. Lee, Metals, 2020, 10(2), 293.   DOI
5 Z. Hydrometalurgicke, Z. Medi, Z. Chromu, K. Galvanickych, A. Miskufova, Acta Metall. Slovaca, 2006, 12(1), 293-302.
6 J. E. Silva, A. P. Paiva, D. Soares, A. Labrincha, F. Castro, J. Hazard. Mater., 2005, 120(1-3), 113-118.   DOI
7 T. C. Chen, R. Priambodo, R. L. Huang, Y. H. Huang, J. Waste Manag., 2013, 2013, 1-6.
8 G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1992, 22(2), 104-115.   DOI
9 L. Cifuentes, J. M. Castro, G. Crisostomo, J. M. Casas, J. Simpson, Appl. Math. Model., 2007, 31(7), 1308-1320.   DOI
10 G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1994, 24(5), 377-383.   DOI
11 M. Mahon, S. Peng, A. Alfantazi, Can. J. Chem. Eng., 2014, 92(4), 633-642.   DOI
12 P. Fornari, C. Abbruzzese, Hydrometallurgy, 1999, 52(3), 209-222.   DOI
13 S. Y. Chen, Q. Y. Huang, J. Chem. Technol. Biotechnol., 2014, 89(1), 158-164.   DOI
14 V. Forti, C. P. Balde, R. Kuehr, G. Bel, The Global Ewaste Monitor 2020: Quantities, flows and the circular economy potential, 2020.
15 A. Islam, T. Ahmed, M. R. Awual, A. Rahman, M. Sultana, A. A. Aziz, M. U. Monir, S. H. Teo, M. Hasan, J. Clean. Prod., 2020, 244, 118815.   DOI
16 F. A. D. Amaral, V. S. Dos Santos, A. M. Bernardes, Miner. Eng., 2014, 60, 1-7.   DOI
17 J. Jandova, T. Stefanova, R. Niemczykova, Hydrometallurgy, 2000, 57(1), 77-84.   DOI
18 P. P. Li, C. S. Peng, F. M. Li, S. X. Song, A. O. Juan, Int. J. Environ. Res., 2011, 5(3), 797-804.
19 J. E. Silva, D. Soares, A. P. Paiva, J. A. Labrincha, F. Castro, J. Hazard. Mater., 2005, 121(1-3), 195-202.   DOI
20 J. Wazeck, Geologica Saxonica : J. Cent. Eur. Geol., 2013, 59, 251-258.
21 F. Veglio, R. Quaresima, P. Fornari, S. Ubaldini, Waste Manag., 2003, 23(3), 245-252.   DOI
22 E. Haccuria, P. Ning, H. Cao, P. Venkatesan, W. Jin, Y. Yang, Z. Sun, J. Clean. Prod., 2017, 152, 150-156.   DOI
23 F. Xie, T. Cai, Y. Ma, H. Li, C. Li, Z. Huang, G. Yuan, J. Clean. Prod., 2009, 17(16), 1494-1498.   DOI
24 N. Ma-ud, S. Khumkoa, P. Buahombura, W. Piyawit, T. Patcharawit, S. Thongnak, T. Yingnakorn, J. Mater. Sci. Eng., 2019, 8(5), 540.
25 D. C. Price, W. G. Davenport, Metall. Mater. Trans. B, 1980, 11(1), 159-163.
26 B. Li, X. Wang, Y. Wei, H. Wang, M. Barati, Miner Eng., 2018, 128, 247-253.   DOI
27 S. Silva-Martinez, S. Roy, Sep. Purif. Technol., 2013, 118, 6-12.   DOI
28 L. Cifuentes, J. M. Casas, J. Simpson, Chem. Eng. Sci., 2008, 63(4), 1117-1130.   DOI
29 V. D. Stankovic, A. A. Wragg, J. Appl. Electrochem., 1995, 25(6), 565-573.   DOI
30 G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1992, 22(8), 687-692.   DOI