• Title/Summary/Keyword: electrochemical double-layer capacitors

Search Result 47, Processing Time 0.053 seconds

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

An Accelerated Degradation Test of Electric Double-Layer Capacitors (전기이중층커패시터의 가속열화시험)

  • Jung, Jae-Han;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

Effect of Boric Acid Treatment on the Electrochemical Properties of the Phenol-Based Activated Carbon (페놀계 활성탄소의 전기화학 특성에 미치는 붕산 처리의 영향)

  • Jung, Min-Jung;Yu, Hye-Ryeon;Lee, Dayoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • In this study, the surface of a phenol based activated carbon (AC) used as an electrode in an electric double layer capacitor was modified via boric acid treatment for the capacitance investigation. The effect of boric acid treatment on electrochemical performance was also investigated. The AC surface functional groups ratio of quinone-like (O=C) which is electrochemical active functional groups was increased after the boric acid treatment. And, boric acid treated AC showed an increase in the specific surface area, total pore volume, and micropore volume. In case of optimum boric acid treated AC, its specific capacitance increased by 20% in comparison to that of untreated AC. These results demonstrate that a boric acid treated carbon surface-based electric double layer capacitor electrode effectively enhances specific capacitance.

Effect of crystallinity on the electrochemical properties of carbon black electrodes

  • Yoo, Hye-Min;Heo, Gun-Young;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.252-255
    • /
    • 2011
  • Carbon-based electric double-layer capacitors are being evaluated as potential energy-storage devices in an expanding number of applications. In this study, samples of carbon black (CB) treated at different temperatures ranging from $650^{\circ}C$ to $1100^{\circ}C$ were used as electrodes to improve the efficiency of a capacitor. The surface properties of the heat-treated CB samples were characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The effect of the heat-treatment temperature on the electrochemical behaviors was investigated by cyclic voltammetry and in galvanostatic charge-discharge experiments. The experimental results showed that the crystallinity of the CBs increased as the heat-treatment temperature increased. In addition, the specific capacitance of the CBs was found to increase with the increase in the heat-treatment temperature. The maximum specific capacitance was 165 $F{\cdot}g-1$ for the CB sample treated at $1000^{\circ}C$.

Effect of Binders on Electrochemical and Mechanical Properties of Activated Carbon Electrode for Electric Double Layer Capacitor (EDLC용 활성탄소 전극의 전기화학적 기계적 특성에 미치는 바인더의 영향)

  • Jeon, Min-Je;Kim, Ick-Jun;Yang, Sun-Hye;Moon, Seong-In;Kim, Hyun-Soo;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1167-1171
    • /
    • 2006
  • This work describes the effect of binders, such as carboxymethylcellulose (CMC), CMC+ Polytetrafluoroethylene (PTFE) and PTFE, on the electrochemical and mechanical properties of activated carbon-electrode for electric double layer capacitor. The cell capacitors using the electrode bound with binary binder composed of CMC and PTFE, especially in composition CMC PTFE = 60 : 40 wt.%, has better rate capability and the lower internal resistance than those of the cell capacitor with CMC. On the other hand, the sheet type electrode kneaded with PTFE was bonded with conductive adhesive on Al foil. This cell capacitor using the electrode with PTFE exhibited the best mechanical properties and rate capability compared to the CMC and CMC+PTFE one. These behaviors could be explained by the well-developed network structure of PTFE fibrils doting the kneading process.

Electrochemical Characteristics of EDLCs with Selectivity Factors for the Organic Electrolyte (유기용매전해질에 따른 전기이중층캐패시터의 전기화학적 특성)

  • Lee, Sun-young;Ju, Jeh-Beak;Sohn, Tae-Won;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Electric double layer capacitors(EDLCS) based on the charge stored at the interface between a hi팀 surface area carbon electrode and an organic electrolyte solution are widely used as a maintenance-free power source for IC memories and microcomputers. The achievement of the excellent performance of the capacitor requires an electrolyte solution which provides high conductivities over a wide temperature range and good electrochemical stabilities to allow the capacitor to be operated at high voltage. The electrochemical capacitor using a carbon material as electrodes and using an organic electrolyte with $1M-LiPF_6$ in PC-GBL-DEC(volume ratio 1:1:2) has specific capacitance of 64F/g.

Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode (탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상)

  • Min, Hyung-Seob;Kim, Sang-Sig;Cheong, Deock-Soo;Choi, Won-Kook;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.544-549
    • /
    • 2009
  • Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries (이차전지 음극용 탄소 전극을 이용한 리튬이온 커패시터 연구)

  • Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.489-493
    • /
    • 2013
  • The most common carbonaceous anode materials of lithium ion batteries (natural graphite, artificial graphite, hard carbon, and mesocarbon microbeads) were utilized as an electrode in lithium ion capacitors. It could be able to enhance the energy density of capacitors due to the intercalation of lithium ion. In this work, the properties of capacitors using the symmetric electrode were measured by organizing coin cell typed capacitors. Also, we made other capacitors having pre-intercalated lithium ions at one side of the electrode. The results of electrochemical measurements for these capacitors show that the storage capacitance was appeared. In other words, if the migration of lithium ions is supplied continuously in the electrolytes, lithium ions can be diffused into the carbonaceous materials. And it results in the improvement of capacitance compared to only using symmetric carbonaceous electrodes. Also, we conducted the same measurement with graphene oxide having a the large specific area in the same condition. Herein, we recognized that the large specific area is extremely important for supercapacitors.

Surface Treatment of Multi-walled Carbon Nanotubes for Increasing Electric Double-layer Capacitance (다중벽 탄소나노튜브의 표면처리에 따른 전기이중층 커패시터의 특성)

  • Kim, Ji-Il;Kim, Ick-Jun;Park, Soo-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this work, the electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) were studied. Nitrogen and oxygen functional groups of the MWNTs were introduced by urea and acidic treatment, respectively. The surface functional groups of the MWNTs were confirmed by X-ray photoelectron spectroscopy (XPS) measurements and zeta-potential method. The characteristics of $N_2$ adsorption isotherm at 77 K, specific surface area, and total pore volumes were investigated by BET eqaution, BJH method and t-plot method. Electrochemical properties of the functionalized MWNTs were accumulated by cyclic voltammetry at the scan rates of 50 $mVs^{-1}$ and 100 $mVs^{-1}$ in 1M $H_2SO_4$ as electrolytes. As a result, the functionalized MWNTs led to an increase of capacitance as compared with pristine MWNTs. It was found that the increase of capacitance for urea treated MWNTs was attributed to the increase in density of surface functional groups, resulting in improving the wettability between electrode materials and charge species.

Study for Addition Effect of Propylene Carbonate to 1-ethyl-3-methylimidazolium in Electric Double Layer Capacitors (Propylene Carbonate 첨가된 1-ethyl-3-methylimidazolium의 전기이중층 커패시터에서의 효과)

  • Kim, Hyun-Chul;Yang, Jeong-Jin;Kim, Han-Joo;Sin, Dal-Woo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Because the ionic liquid added with Propylene carbonate(PC) at room temperature has lower viscosity than original, we considered electrochemical behavior of it in EDLC. The ionic liquid without PC which does not have ions has no problem in capacity since it has enough ions. The electrolyte resistance was decreased with decreasing viscosity. As a result of identifying high current discharge capacity, we observed that the ionic liquid had capacity of 73.12% at current density of $80\;mA/cm^{-2}$, but it increased to 81.94% at PC content of 40 vol%.