• Title/Summary/Keyword: electrochemical conversion

Search Result 254, Processing Time 0.025 seconds

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Active Materials for Energy Conversion and Storage Applications of ALD

  • Sin, Hyeon-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.75.2-75.2
    • /
    • 2013
  • Atomic layer deposition (ALD), utilizing self-limiting surface reactions, could offer promising perspectives for future efficient energy conversion devices. The capabilities of ALD for surface/interface modification and construction of novel architectures with sub-nanometer precision and exceptional conformality over high aspect ratio make it more valuable than any other deposition methods in nanoscale science and technology. In the context, a variety of researches on fabrication of active materials for energy conversion applications by ALD are emerging. Among those materials, one-dimensional nanotubular titanium dioxide, providing not only high specific surface area but also efficient carrier transport pathway, is a class of the most intensively explored materials for energy conversion systems, such as photovoltaic cells and photo/electrochemical devices. The monodisperse, stoichiometric, anatase, TiO2 nanotubes with smooth surface morphology and controlled wall thickness were fabricated via low-temperature template-directed ALD followed by subsequent annealing. The ALD-grown, anatase, TiO2 nanotubes in alumina template show unusual crystal growth behavior which allows to form remarkably large grains along axial direction over certain wall thickness. We also fabricated dye-sensitized solar cells (DSCs) introducing our anatase TiO2 nanotubes as photoanodes, and studied the effect of blocking layer, TiO2 thin films formed by ALD, on overall device efficiency. The photon convertsion efficiency ~7% were measured for our TiO2 nanotubebased DSCs with blocking layers, which is ~1% higher than ones without blocking layer. We also performed open circuit voltage decay measurement to estimate recombination rate in our cells, which is 3 times longer than conventional nanoparticulate photoanodes. The high efficiency of our ALD-grown, anatase, TiO2 nanotube-based DSCs may be attributed to both enhanced charge transport property of our TiO2 nanotubes photoanode and the suppression of recombination at the interface between transparent conducting electrode and iodine electrolytes by blocking layer.

  • PDF

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Synthesis and Characterization of New Poly(2,7-Carbazole) Derivative for Organic Solar Cells (유기 태양 전지 응용을 위한 새로운 카바졸계 고분자 합성 및 특성에 관한 연구)

  • Lee, Sang Kyu;Kim, Hee Joo;Park, Song Joo;Chae, Eun Ah;Cho, Jung Min;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • Polymer solar cells (PSCs) have attracted considerable academic and commercial interest because of their unique advantages, such as the facile manufacture of low cost, flexibility, lightweight, and solution processibility. Recently, high-performance polymer solar cells made from a mixture of poly(2,7-carbazole) derivatives, PCDTBT, and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) have been reported, with maximum power conversion efficiency of 6.1%. In this work, we report new novel copolymers based on poly(2,7-carbazole) derivatives with a suite of electron-deficient moieties or electron-rich units. We systematically investigated the synthesis, thermal stability, as well as the optical and electrochemical properties of these polymers. Detailed synthetic scheme, optical, electrochemical, and photovoltaic properties of the copolymers will be presented.

  • PDF

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells

  • Yeon, Seung-Hyeon;Patel, Rajkumar;Koh, Jong-Kwan;Ahn, Sung-Hoon;Kim, Jong-Hak
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon;Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1983-1987
    • /
    • 2008
  • This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.

Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Yoo, Beom-Hin;Kim, Kyung-Kon;Lee, Doh-Kwon;Kim, Hong-Gon;Kim, Bong-Soo;Park, Nam-Gyu;Ko, Min-Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • In this review, we have investigated the effect of $TiO_2$-based blocking layers (t-BLs), deposited on a transparent conductive oxide (TCO)-coated glass substrate, on the photovoltaic performance of dye-sensitized solar cells (DSSCs). The t-BL was deposited using spin-coating or sputtering technique, and its thicknesses were varied to study the influence of the thin $TiO_2$ layer in between transparent conducting glass and nanocrystalline $TiO_2$ (nc-$TiO_2$). The DSSC with the t-BL showed the improved adhesion and the suppressed charge recombination at a TCO glass substrate than those without the t-BL, which led to the higher conversion efficiency.

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures

  • Priya, S. Dharani;Selvakumar, A. Immanuel;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.99-116
    • /
    • 2020
  • The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.

Preparation of $TiO_2$ Film by the Dip-Coating Method and its Application to Photo electrochemical Electrodes (침액 코오팅 방법에 의한 $TiO_2$ 박막의 제조와 광전기 화학전극의 응용에 관한 연구)

  • Jung, Hyun-Chai;Ahn, Byung-Doo;Kim, Ki-Sun
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 1989
  • Preparation of $TiO_2$ Film by the Dip-coating Method and its Application to photo-electrochemical Electrodes. $TiO_2$ film of n-type semiconductor has been of great interest as a material for solar energy conversion. For its practical application, the dip-coating method has been applied to prepare $TiO_2$ (anatase) film on the nesa glass substrate. Films up to about $1.8{\mu}m$ in thickness can be obtained by repeating the operation, dipping $\to$ pulling up $\to$ drying $\to$ heating at $500^{\circ}C$ for 10 minute. Heating temperature at $500^{\circ}C$ was adopted to convert $TiO_2$ gels into $TiO_2$ crystalline films. The $TiO_2$ films showed the maximum photocurrent ($14mA/cm^2$) at the film thickness of about $1.8{\mu}m$. It was also found that the additional heating at $500^{\circ}C$ for about 20 minutes improved remarkably the photo current of the $TiO_2$ films.

  • PDF

Growth of Etch Pits on Aluminium Cathode Film (알루미늄 음극박의 에치 피트 성장)

  • Kim, Hong-Il;Kim, Sung-Han;Kim, Young-Sam;Shin, Jin-Sik;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.338-339
    • /
    • 2005
  • The wider surface of the aluminum foil, electrochemically very important and it is necessary to increase the surface area. A study has been made of the fabrication condition for etching cube texture of high purity aluminium foil and of electrochemical etching of the aluminium foil. In the present work, it is shown there exists a relation between the influence of the pre-treatment time in the NaOH & HCI solution and $H_2SO_4$ concentration in the conversion solution. Also effect of temperature during AC etching was also studied. Result of the etched aluminum film is shown in the typical SEM images. Its electrochemical characteristics were investigated by cyclic voltammetry. And effects of current density and frequency is also reported. Cyclic voltammogram showed that the protective oxide film was formedon the inner surfaces of etch pit. the frequency influence resistance of oxide film in AC etching.

  • PDF