References
- B. O. Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
- Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys. Part 2., 45, L638 (2006). https://doi.org/10.1143/JJAP.45.L638
- F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 130, 10720 (2008). https://doi.org/10.1021/ja801942j
- N.-G. Park and K. Kim, Phys. Stat. Sol. (a), 205, 1895 (2008). https://doi.org/10.1002/pssa.200778938
- N. Kopidakis, J. van de Lagemaat and A. J. Frank, Coord. Chem. Rev., 248, 1165 (2004). https://doi.org/10.1016/j.ccr.2004.03.015
- J. van de Lagemaat, N.-G. Park and A. J. Frank, J. Phys. Chem. B, 104, 2044 (2000). https://doi.org/10.1021/jp993172v
- J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff and E. C. Pereira, J. Phys. Chem. B, 104, 2287 (2000). https://doi.org/10.1021/jp993148h
- F. Pichot, S. Ferrere, C. L. Fields and B. A. Gregg, J. Phys. Chem. B, 105, 1422 (2001). https://doi.org/10.1021/jp003000u
- K. Zhu, E. A. Schiff, N.-G. Park, J. van de Lagemaat and A. J. Frank, Appl. Phys. Lett., 80, 685 (2002). https://doi.org/10.1063/1.1436533
- P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 107, 14394 (2003). https://doi.org/10.1021/jp030790+
- P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 109, 930 (2005). https://doi.org/10.1021/jp0405759
- P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 109, 7392 (2005). https://doi.org/10.1021/jp0407270
- H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim and N.-G. Park, Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
- N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 107, 11307 (2003).
- K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 107, 7759 (2003). https://doi.org/10.1021/jp022681l
- A. J. Frank, N. Kopidakis and J. van de Lagemaat, Coord, Chem. Rev., 248, 1165 (2004). https://doi.org/10.1016/j.ccr.2004.03.015
- J. Xia, N. Masaki, K. Jiang and S. Yanagida, J. Phys. Chem. B, 110, 25222 (2006) . https://doi.org/10.1021/jp064327j
- M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
- M. Durr, A. Yasuda and G. Nelles, Appl. Phys. Lett., 89 061110-1 (2006). https://doi.org/10.1063/1.2266386
- B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim and N.-G. Park, J. Mater. chem., 20, 4392 (2010). https://doi.org/10.1039/b926145a
Cited by
- Improved Photovoltaic Properties Of Dye-Sensitized Solar Cells Using Laser Patterned F-Doped SnO2 Thin Films vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0106
- Atomic Layer Deposition of High Performance Ultrathin TiO2Blocking Layers for Dye-Sensitized Solar Cells vol.6, pp.6, 2013, https://doi.org/10.1002/cssc.201300067
- Effect of a ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells vol.65, pp.3, 2014, https://doi.org/10.3938/jkps.65.308
- Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer vol.11, pp.2, 2015, https://doi.org/10.1007/s13391-014-4130-6
- Hole-Transporting Materials for Perovskite-Sensitized Solar Cells vol.4, pp.8, 2016, https://doi.org/10.1002/ente.201500534